U.S. GEOLOGICAL SURVEY Open-File Report 95-394 Prepared in cooperation with the MONO COUNTY ENERGY MANAGEMENT DEPARTMENT # Water-Quality Data for Selected Sites on Reversed, Rush, and Alger Creeks and Gull and Silver Lakes, Mono County, California, April 1994 to March 1995 By Bronwen Wang, Gerald L. Rockwell, and James C. Blodgett U.S. GEOLOGICAL SURVEY Open-File Report 95-394 Prepared in cooperation with the Mono County Energy Management Department 7229-02 # U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. For sale by the U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Denver Federal Center Denver, CO 80225 For additional information write to: District Chief U.S. Geological Survey Federal Building, Room W-2233 2800 Cottage Way Sacramento, CA 95825 ### **CONTENTS** | | ract | | |------|--|----| | | duction | | | Sam | Streams | 3 | | | Lakes | 3 | | Lake | Volume | 3 | | Meth | ods of Analyses | Δ | | | rences Cited | | | 1010 | Chocs Choc | | | | | | | FIGL | RES | | | 1 5 | Maps showing: | | | 1-5. | 1. Location of study area, Mono County, California | 2 | | | 2. Locations of stream sampling sites on Reversed, Rush, and Alger Creeks, | | | | Mono County, California | | | | County, California | | | | County, California | 9 | | | 5. Location of bed-sediment sampling sites on Gull Lake, Mono County, California | 10 | | 6–9. | Graphs showing: | | | | 6. Surface area and volume of Gull Lake, Mono County, California | 11 | | | 7. Stage of Gull Lake, Mono County, California | | | | 8. Surface area and volume of Silver Lake, Mono County, California | | | | 9. Stage of Silver Lake, Mono County, California | 12 | | TABL | .ES | | | 1.0 | Discharge, field-measurement, and water-quality data for | | | 1-7. | 1. Gull Lake inlet, Mono County, California | 15 | | | 2. Reversed Creek below Gull Lake at Highway 158, Mono County, California | | | | 3. Reversed Creek below June Mountain ski area, Mono County, California | | | | 4. Reversed Creek at Reversed Creek Road, Mono County, California | | | | 5. Reversed Creek at Dream Mountain Road, Mono County, California | | | | 6. Rush Creek at Highway 158, Mono County, California | | | | 7. Rush Creek at power plant tailrace, Mono County, California | | | | 8. Alger Creek at Highway 158, Mono County, California | | | | 9. Rush Creek above Grant Lake, Mono County, California | | | 10. | Water-quality data for Gull Lake (site 1), Mono County, California | 24 | | 11. | Field measurements for vertical water profiles of Gull Lake (site 1), Mono County, | | | | California | | | | Water-quality data for Gull Lake (site 2), Mono County, California | 30 | | 13. | Field measurements for vertical water profiles of Gull Lake (site 2), Mono County, | | | | California | 34 | | | Water-quality data for Gull Lake (site 3), Mono County, California | 36 | | 15. | Field measurements for vertical water profiles of Gull Lake (site 3), Mono County, | | | | California | 40 | | 16. | Water-quality data for Silver Lake (site 1), Mono County, California | 12 | |-----|--|----| | 17. | Field measurements for vertical water profiles of Silver Lake (site 1), Mono County, | | | | California | 4 | | 18. | Water-quality data for Silver Lake (site 2), Mono County, California | 16 | | 19. | Field measurements for vertical water profiles of Silver Lake (site 2), Mono County, | | | | California | 8 | | 20. | Water-quality data for Silver Lake (site 3), Mono County, California 5 | | | 21. | Field measurements for vertical water profiles of Silver Lake (site 3), Mono County, | | | | California | 2 | | | Sediment interstitial-water nutrient analysis for Gull Lake, Mono County, California 5 | | | | Surface area and volume of Gull Lake, Mono County, California | | | 24. | Surface area and volume of Silver Lake, Mono County, California | 4 | #### **CONVERSION FACTORS AND VERTICAL DATUM** #### **Conversion Factors** | Multiply | Ву | To obtain | |--|---------|------------------------| | acre | 0.4047 | hectare | | acre-foot (acre-ft) | 1,233 | cubic meter | | cubic foot (ft ³) | 0.02832 | cubic meter | | cubic foot per second (ft ³ /s) | 0.02832 | cubic meter per second | | foot (ft) | 0.3048 | meter | | inch (in.) | 25.4 | millimeter | Temperature is given in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F) by the following equation: °F=1.8(°C)+32. #### **Vertical Datum** Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929—a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929. # Water-Quality Data for Selected Sites on Reversed, Rush, and Alger Creeks and Gull and Silver Lakes, Mono County, California, April 1994 to March 1995 By Bronwen Wang, Gerald L. Rockwell, and James C. Blodgett #### **Abstract** Water-quality data for selected sites on Reversed, Rush, and Alger Creeks and Gull and Silver Lakes, Mono County, California, were collected from April 1994 to March 1995. Water samples were analyzed for major ions and trace elements, nutrients, methylene blue active substances, and oil and grease. Field measurements were made for discharge, specific conductance, pH, water temperature, barometric pressure, dissolved oxygen, and alkalinity. Additional data collected include vertical water profiles of specific conductance, pH, water temperature, and dissolved oxygen collected at 3.3-foot intervals for Gull and Silver Lakes; chlorophyll-a and -b concentrations and Secchi depth for Gull and Silver Lakes; sediment interstitial-water nutrient concentrations in cores from Gull Lake; and lake surface and volume of Gull and Silver Lakes. #### INTRODUCTION Increased tourism and expanded development in the Gull and Silver Lakes vicinity in Mono County, California (fig. 1), have raised concerns about the effects of development on the water quality of these lakes. To aid in determining these effects, this study was done by the U.S. Geological Survey in cooperation with the Mono County Energy Management Department. This report presents water-quality data collected from the Gull and Silver Lakes area between April 1994 and March 1995. Eight stream sites (four on Reversed Creek, three on Rush Creek, and one on Alger Creek) and six lake sites (three on Gull Lake and three on Silver Lake) were sampled. In addition, a small inlet (Gull Lake inlet) was sampled on the northeast end of Gull Lake. Sampling sites were selected to bracket developed areas that may adversely affect the water quality of these lakes and streams. Additional expertise was provided by William Hardy, Ann Chalmers, and Scott Hamlin, all of the U.S. Geological Survey, Sacramento, California. Figure 1. Location of study area, Mono County, California. #### SAMPLE COLLECTION #### Streams Water samples were collected at eight stream sampling sites on Reversed, Rush, and Alger Creeks (fig. 2, at back of report). When flow was adequate, samples were collected using a depth-integrated sampler. During periods of low-flow, grab samples were collected. All samples were composited in a prerinsed churn splitter. Multiple samples from the same stream were collected in an upstream sequence to avoid the effects of increased turbidity on downstream water quality. Water samples collected from the churn were sent to the U.S. Geological Survey National Water-Quality Laboratory in Arvada, Colorado, for chemical analyses. Total nutrients were determined on an unfiltered sample; nitrate, ortho-phosphate, and major and trace ions were determined on a 0.45-micron filtered sample. A separate sample for oil and grease analysis was collected directly into a 1-liter baked amber glass bottle with a Teflon cap. Instantaneous discharge and field measurements also were made at the eight stream sampling sites. Discharge was determined using methods and equipment described in a report by Rantz (1982). Field measurements were made for specific conductance, pH, water temperature, barometric pressure, dissolved oxygen, and alkalinity. Dissolved oxygen and water temperature were measured in situ using a dissolved-oxygen meter and a temperature thermistor, respectively. Discharge, field measurements, and water-quality data for the eight stream sampling sites and the one site on Gull Lake are given in tables 1 through 9 (at back of report). #### Lakes Water samples were collected at three sites on Gull Lake (fig. 3, at back of report) and at three sites on Silver Lake (fig. 4, at back of report). A Scout 2 Water Quality Data System Hydrolab unit was used to measure specific conductance, pH, water temperature, and dissolved oxygen at 3.3-ft depth intervals to determine the vertical water profiles of the lakes. The profiles were used to define the epilimnion, metalimnion, and hypolimnion layers of the lakes. Water samples then were collected at depths corresponding to each of these layers using a Van Dorn point sampler. Samples from the same depth were composited in a prerinsed churn splitter. Secchi measurements were made over the shaded side of a boat using the same observer throughout the study. Vertical water profiles and water-quality data for Gull and Silver Lakes are given in tables 10 through 15 and tables 16 through 21 (at back of report), respectively. Bed-sediment samples were collected from Gull Lake (fig. 5, at back of report) using either a gravity corer or a Ponar grab sampler. Using methods described by Siever (1962) and Manheim (1966), which were modified slightly for this
study, the sediment samples then were pressed hydraulically to obtain interstitial water. Nutrient data for the interstitial water are given in table 22 (at back of report). #### LAKE VOLUME The surface area and volume of Gull and Silver Lakes were surveyed on September 27-29, 1994. The lakebed geometry was mapped using a fathometer with an electronic distance measuring theodolite (EDM) to provide horizontal control. Contours of the lakebeds of Gull and Silver Lakes were mapped at 5- and 10-ft intervals, respectively (figs. 3 and 4). These data were used to calculate surface area and volume of Gull Lake (table 23 and fig. 6 at back of report) and of Silver Lake (table 24 and fig. 8 at back of report). The volumes of the lakes were calculated using the average surface areas between contours, which then were combined to indicate volume above the lowest point of the lakebed. Changes in volume of Gull and Silver Lakes were measured during the spring and summer of 1994. A staff gage was placed at the marina on the east side of Gull Lake and at the public boat ramp at the north end of Silver Lake. The staff gages generally were read once or twice a week between March 30 and October 12, 1994. These readings were obtained at various depth intervals. The changes in lake elevations between March and October 1994 are shown on figures 7 and 9 (at back of report). Lake elevation is referenced to sea level using nearby bench marks established by the California Department of Transportation (Caltrans). #### **METHODS OF ANALYSES** All samples were analyzed using standard U.S. Geological Survey procedures and guidelines. These methods or procedures include colorimetric analysis to analyze ammonia, nitrite, nitrite plus nitrate, total ammonia plus organic nitrogen, total phosphorous, and ortho-phosphate; ion-exchange chromatography to analyze major ions; and atomic absorption or emission spectroscopy to analyze cations and metal [for detailed descriptions of these procedures, the reader is referred to Friedman and Erdmann (1982)]. Methylene blue active substances were analyzed spectrophotometrically, and oil and grease were analyzed gravimetrically (Goerlitz and Brown, 1984). #### REFERENCES CITED - Friedman, L.C., and Erdmann, D.E., 1982, Quality assurance practices for the chemical and biological analyses of water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A6, 181 p. - Goerlitz, D.F., and Brown, E., 1984, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A3, 40 p. - Manheim, F.T., 1966, A hydraulic squeezer for obtaining interstitial water from unconsolidated sediments: U.S. Geological Survey Professional Paper 550-C, p. C256-C261. - Rantz, S.E., and others, 1982, Measurement and computation of streamflow: Volume 1. Measurement of stage and discharge: U.S. Geological Survey Water-Supply Paper 2175, p. 1–284. - Siever, R., 1962, A squeezer for extracting interstitial waste: *Journal of Sedimentary Petrology*, v. 32, p. 329-331. **FIGURES** Figure 2. Locations of stream sampling sites on Reversed, Rush, and Alger Creeks, Mono County, California. Figure 3. Bathymetric contours and water-quality sampling sites on Gull Lake, Mono County, California. Figure 4. Bathymetric contours and water-quality sampling sites on Silver Lake, Mono County, California. Figure 4. Bathymetric Contours and Water-Quality Sampling Sites on Silver Lake 9 Figure 5. Location of bed-sediment sampling sites on Gull Lake, Mono County, California. Figure 6. Surface area and volume of Gull Lake, Mono County, California. Figure 7. Stage of Gull Lake, Mono County, California, March through early October 1994. Figure 8. Surface area and volume of Silver Lake, Mono County, California. Figure 9. Stage of Silver Lake, Mono County, California, March through early October 1994. **TABLES** Table 1. Discharge, field-measurement, and water-quality data for Gull Lake inlet, Mono County, California | Date
(1994) | Dis-
charge,
instanta-
neous
(ft³/s) | Spe-
cific
con-
duct
ance
(µS/cr | w
w
f | pH
vater,
vhole
ield
tand-
ard | Temper-
ature,
water
(°C) | pro
su | tric Ox
es- c
re so
n of (m | kygen,
dis-
olved
ng/L) | Oxygen,
dis-
solved
(percent
satura-
tion) | ness,
total | Cal-
cium,
dis-
solved
(mg/L
as Ca) | |----------------|--|--|--|---|---|---|---|----------------------------------|---|--|--| | | | (μονοι | u: | nits) | | | Б) | | uon) | | as Ca) | | April 25 | e0.10 | 114 | | 7.1 | 5.0 | 56 | 66 | 8.3 | 88 | 39 | 13 | | June 6 | e .05 | 114 | | 7.9 | 14.0 | 57 | | 9.0 | 117 | 41 | 14 | | July 27 | e .01 | 126 | | 7.3 | 13.5 | <i>5</i> 8 | 80 | 6.4 | 81 | 51 | 17 | | October 12 | e .05 | 109 | | 7.6 | 7.0 | | _ | _ | | 39 | 13 | | Date | Magne-
sium,
dis- | Sodi
di | • | Potas-
sium,
dis- | bor
wa | car-
nate
iter, | Car-
bonate
water, | | Alka-
linity,
vater wh | Sulfate,
dis- | Chlo-
ride,
dis- | | (1994) | solved | sol | | solved | | h it | wh it | | total it | solved | solved | | (1994) | | (mg/L
as Mg) (mg/L
as Na) | | (mg/L | | eld | field
(mg/L as
CO ₃) | | field | (mg/L | (mg/L | | | | | | as K) | | /L as
(O ₃) | | | mg/L as
CaCO ₃) | as SO ₄) | as Cl) | | April 25 | 1.5 | 6. | 1 | 2.3 | 6 | 0 | 0 | | 49 | 3.7 | 2.1 | | June 6 | 1.5 | 6. | 0 | 2.2 | 5 | 9 | 0 | | 49 | 3.1 | 2.8 | | July 27 | 2.0 | 6. | 0 | 3.7 | 7 | | 0 | | 64 | .9 | 2.0 | | October 12 | 1.7 | 5. | 8 | 3.2 | 5 | 7 | 0 | | 47 | 4.0 | 2.1 | | Date
(1994) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | Solids,
residue
at
180°C,
dis-
solved | sur
co
tue
d
so | lids,
m of
nsti-
ents,
lis- | Nitrogen, nitrite, dis- solved (mg/L | Nitro
gen
NO ₂
NO
tota
(mg/ | t,
+
3,
ul
/L | Nitrogen, NO ₂ + NO ₃ , dis- solved (mg/L | Nitrogen,
ammonia,
dis-
solved
(mg/L | Nitro
gen,
ammonia
+ organic,
total
(mg/L | | | <u> </u> | | (mg/L) | (m | g/L) | as N) | as N | | as N) | as N) | as N) | | April 25 | <0.10 | 43 | 98 | | 02 | <0.010 | 0.07 | 6 | 0.076 | 0.030 | 0.70 | | June 6 | <.10 | 42 | 98 | | 01 | <.010 | _ | | <.050 | .030 | .20 | | July 27 | .10 | 44 | 114 | | 14 | <.010 | _ | | <.050 | .030 | 1.0 | | October 12 | <.10 | 43 | 92 | <u>.</u> | .01 | <.010 | | | <.050 | .020 | <.20 | | Date
(1994) | Phosphorus, total (mg/L as P) | Pho
phor
dis
solv
(mg
as l | us,
:-
ed
/L | Phosphorus ortho, dissolved (mg/L as P) | so (| oron,
dis-
olved
µg/L
as B) | Iron,
dis-
solved
(μg/L
as Fe) | | Manga- nese, dis- solved (μg/L as Mn) | Methy-
lene
blue
active
sub-
stance
(mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 25 | 0.100 | 0.04 | Ю | 0.030 | | 10 | 470 | | 110 | <0.02 | · <1 | | June 06 | .070 | .03 | | .040 | | <10 | 340 | | 44 | | | | | | | | | | | | | 25 | 04 | <1 | | July 27 | .370 | .01 | U | .020 | | 20 | 150 | | 23 | .04 | <1 | e Estimated **Table 2.** Discharge, field-measurement, and water-quality data for Reversed Creek below Gull Lake at Highway 158, Mono County, California | Date
(1994) | Dis-
charge,
instanta-
neous
(ft³/s) | Spe-
cific
con-
duct
ance
(µS/cr | (s | pH
vater,
vhole
field
tand-
ard
nits) | Temper-
ature,
water
(°C) | me
pr
sı
(mı | etric
es-
es-
n of | Oxygen,
dis-
solved
(mg/L) | Oxygen, dis- solved (per- cent satura- tion) | Hard-
ness,
total
(mg/L
as
CaCO ₃) | Cal- cium, dis- solved (mg/L as Ca) | |----------------|--|--|--|---|---|--|---|--|--|---|---| | April 25 | 0.72 | 136 | u | 7.5 | 9.0 | 5(| 56 | 7.8 | 91 | 47 | 17 | | June 6 | .25 | 137 | | 7.8 | 15.5 | 5 | 73 | 7.3 | 97 | 45 | 16 | | July 27 | e .01 | 161 | | 7.5 | 12.0 | - | _ | _ | | 49
54 | 17 | | October 12 | e .05 | 146 | | 7.7 | 6.0 | | | | | | 19 | | Date
(1994) | Magne- sium, dis- solved (mg/L as Mg) | Sodi
di
solv
(mg
as I | s-
ved
g/L | Potas-
sium,
dis-
solved
(mg/L
as K) | Bio
bon
war
wh
fie
(mg/
HC | ate
ter,
it
ld
L as | Ca
bon
wat
wh
fiel
(mg/l | ate
er,
it
ld
L as | Alka-
linity,
water wh
total it
field
(mg/L as
CaCO ₃) | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dissolved (mg/L as Cl) | | April 25 | 1.2 | 8. | 5 | 2.7 | 74 | | 0 | | 60 | 4.8 | 2.0 | | June 6 | 1.2 | 8. | | 2.6 | | | _ | | | 5.4 | 1.8 | | July 27 | 1.5 | 8. | | 2.3 | 79 |) | 0 | | 65 | 4.8 | 1.5 | | October 12 | 1.6 | 9.
 3 | 3.1 | 74 | | 0 | | 61 | 11 | 1.9 | | Date
(1994) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | Solids,
residue
at
180°C,
dis-
solved
(mg/L) | sui
co
tud
d
so | lids,
m of
nsti-
ents,
lis-
lved
g/L) | Nitrogen, nitrite, dis- solved (mg/L as N) | | Nitrogen,
NO ₂ +
NO ₃ ,
total
(mg/L
as N) | Nitro- gen, NO ₂ + NO ₃ , dis- solved (mg/L as N) | Nitrogen, ammonia, dissolved (mg/L as N) | Nitrogen,
ammonia
+ organic,
total
(mg/L
as N) | | April 25 | 0.10 | 4.3 | 74 | | 77 | <0.010 | | _ | <0.050 | 0.010 | <0.20 | | June 6 | .10 | 4.7 | 82 | | | <.010 | | | <.050 | .040 | .30 | | July 27 | .10 | 7.6 | 82 | | 83 | <.010 | | 0.087 | .087 | .040 | .30 | | October 12 | .10 | 5.8 | 68 | | 88 | <.010 | | | <.050 | .020 | .30 | | Date
(1994) | Phosphorus, total (mg/L as P) | Pho
phor
dis
solv
(mg
as I | us,
-
ed
/L | Phosphorus ortho, dissolved (mg/L as P) | sc
L (j | oron,
dis-
olved
ug/L
s B) | so
() | ron,
lis-
lved
ug/L
Fe) | Manga-
nese,
dis-
solved
(µg/L
as Mn) | Methylene blue active substance (mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 25 | 0.020 | <0.01 | 0 | <0.010 | | 30 | | 63 | 18 | 0.02 | <1 | | June 6 | .020 | <.01 | 0 | <.010 | | 20 | | 34 | 18 | <.02 | | | July 27 | .010 | .01 | | <.010 | | 30 | | 16 | 49 | <.02 | _ | | October 12 | .020 | .02 | 0 | <.010 | | 30 | | 6 | 4 | | | e Estimated **Table 3.** Discharge, field-measurement, and water-quality data for Reversed Creek below June Mountain ski area, Mono County, California | Date (1994) | Dis-
charge,
instanta-
neous
(ft ³ /s) | Spe-
cific
con-
duct-
ance
(µS/cn | w
w
f
(st | iioie
ield | emper-
ature,
water
(°C) | Baro- metric pres- sure (mm of Hg) | Oxygen
dis-
solved
(mg/L) | Oxygen, dis- solved (per- cent satura- tion) | Hard-
ness,
total
(mg/L
as
CaCO ₃) | Calcium, dissolved (mg/L as Ca) | |--------------------|---|--|--|---|--|------------------------------------|--|---|---|---| | April 25
June 6 | 1.5
1.0 | 150
153 | | 7.7
7.8 | 10.5
13.5 | 566
574 | 8.0
7.0 | 97
90 | 56
59 | 20
21 | | Date (1994) | Magne-
sium,
dis-
solved
(mg/L
as Mg) | Sodi
dis
solv
(mg
as N | ed
/L | Potas-
sium,
dis-
solved
(mg/L
as K) | Bicar-
bonate
water,
wh it
field
(mg/L as
HCO ₃) | bor
wa
wl
fie
(mg, | ar-
nate
ater,
h it
eld
/L as
O ₃) | Alkalinity, water wh total it field (mg/L as CaCO ₃) | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dis- solved (mg/L as Cl) | | April 25
June 6 | 1.5
1.5 | 6.
6. | | 2.3
2.0 | 77
79 | (| | 63
64 | 6.7
8.0 | 1.8
1.5 | | Date (1994) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | Solids,
residue
at
180°C,
dis-
solved
(mg/L) | Solid
sum o
const
tuents
dis-
solve
(mg/I | of ge
i- nitr
s, di
solv
d (mg | n,
ite,
s-
ved
t/L | Nitrogen,
NO ₂ +
NO ₃ ,
total
(mg/L
as N) | Nitro- gen, NO ₂ + NO ₃ , dis- solved (mg/L as N) | Nitrogen,
ammonia,
dissolved
(mg/L
as N) | Nitrogen, ammonia + organic, total (mg/L as N) | | April 25
June 6 | 0.10
.10 | 31
34 | 110
120 | 109
114 | <0.0
<.0 | | 0.110
.140 | 0.110
.140 | 0.020
.030 | 0.60
<.20 | | Date (1994) | Phosphorus, total (mg/L as P) | Phosphore dissolve (mg/ as F | 1s,
-
ed
L | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(µg/L
as B) | S(| Iron,
dis-
olved
(µg/L
is Fe) | Manga- nese, dis- solved (µg/L as Mn) | Methylene blue active substance (mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 25
June 6 | 0.050
<.010 | <0.01
<.01 | | <0.010
<.010 | 20
20 | | 78
50 | 38
24 | 0.05
<.02 | <1
— | **Table 4.** Discharge, field-measurement, and water-quality data for Reversed Creek at Reversed Creek Road, Mono County, California | Date
(1994) | Dis-
charge,
instanta-
neous
(ft³/s) | Spe-
cific
con-
duct-
ance
(µS/cn | wa
wi
fi
(st | eld and- | emper- ature, water (°C) | sure
mm | Oxygen,
dis-
solved
(mg/L) | Oxygen,
dis-
solved
(per-
cent
satura-
tion) | Hard-
ness,
total
(mg/L
as
CaCO ₃) | Cal- cium, dis- solved (mg/L as Ca) | |--------------------|--|--|--|--|--|---|--|--|---|---| | April 25
June 7 | 2.2
1.6 | 121
118 | | 7.8
7.9 | | 566
590 | 8.6
9.1 | 96
95 | 47
49 | 16
17 | | Date (1994) | Magne-
sium,
dis-
solved
(mg/L
as Mg) | Sodi
dis
solv
(mg
as N | um,
s-
red
t/L | Potas-
sium,
dis-
solved
(mg/L
as K) | Bicarbonate water, wh it field (mg/L as HCO ₃) | Carbonate water, wh it field (mg/L a | | Alka-
linity,
water wh
total it
field
(mg/L as
CaCO ₃) | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dis- solved (mg/L as Cl) | | April 25
June 7 | 1.6
1.6 | 6.0
5.2 | | 2.3
2.0 | 64
66 | 0 | | 53
54 | 4.6
5.7 | 1.6
1.2 | | Date
(1994) | Fluo-
ride,
dis-
solved
(mg/L
as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | Solids,
residue
at
180°C,
dis-
solved
(mg/L) | Solids
sum o
consti
tuents
dis-
solved
(mg/L | f gen, - nitrite , dis- solve i (mg/l | g
c, No
d to | itro- gen, O ₂ + IO ₃ , otal ng/L s N) | Nitro- gen, NO ₂ + NO ₃ , dis- solved (mg/L as N) | Nitrogen, ammonia, dissolved (mg/L as N) | Nitrogen, ammonia + organic, total (mg/L as N) | | April 25 June 7 | 0.10
<.10 | 36
38 | 96
94 | 100
104 | <0.010
<.010 | | .085 | 0.085
.130 | 0.020
.020 | 0.20
<.20 | | Date (1994) | Phos-
phorus,
total
(mg/L
as P) | Pho-
phori
dis-
solve
(mg/
as F | s-
us,
-
ed
L | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(µg/L
as B) | Iron
dis-
solve
(µg/l
as Fe | ed
L | Manga- nese, dis- solved (µg/L as Mn) | Methylene blue active substance (mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 25
June 7 | 0.300
.020 | 0.02
<.01 | | 0.020 | 20
<10 | 90
42 | | 20
17 | <0.02
.03 | <1
— | **Table 5.** Discharge, field-measurement, and water-quality data for Reversed Creek at Dream Mountain Road, Mono County, California | Date
(1994) | Dis-
charge,
instanta-
neous
(ft³/s) | Spe-
cific
con-
duct-
ance
(µS/cm | wa
wi
fi
(st | eld 8 | emper- ature, vater (°C) | Baro- metric pres- sure (mm of Hg) | Oxygen
dis-
solved
(mg/L) | Oxygen dis- solved (per- cent satura- tion) | Hard-
ness,
total
(mg/L
as
CaCO ₃) | Calcium, dissolved (mg/L as Ca) | |--|--|--|--|--|--|--|--|---|--|---| | April 25
June 7
July 27
September 6
October 11 | 6.3
14
2.9
1.4
2.8 | 88
43
108
115
107 | 7
8
8 | | 5.0
 2.0
 3.0 | 566
585
589
591
581 | 9.4
9.6
8.1
7.9
8.5 | 97
99
98
97
96 | 33
18
39
47
48 | 11
6.0
13
16
16 | | Date
(1994) | Magne- sium, dis- solved (mg/L as Mg) | Sodiu
dis
solve
(mg/
as N | im,
ed
L | Potas- sium, dis- solved (mg/L as K) | Bicar-
bonate
water,
wh it
field
(mg/L as
HCO ₃) | Ca
bon
wat
wh
fie
(mg/l | ate
er,
it
ld
L as | Alkalinity, water wh total it field (mg/L as CaCO ₃) | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dis- solved (mg/L as Cl) | | April 25
June 7
July 27
September 6
October 11 | 1.3
.71
1.6
1.8
1.9 | 3.7
1.8
3.4
4.0
4.2 | • | 1.6
.80
1.2
1.7
1.7 | 47
22
52
61
58 | 0
0
0
0 | | 39
18
43
50
48 | 4.6
3.6
5.0
4.9
6.8 | 1.4
.30
.50
.70 | |
Date
(1994) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | Solids,
residue
at
180°C,
dis-
solved
(mg/L) | Solids
sum of
consti-
tuents,
dis-
solved
(mg/L) | f gen
nitrit
dis-
solve
(mg/ | ,
e,
:
:d
L | Nitrogen,
NO ₂ +
NO ₃ ,
total
(mg/L
as N) | Nitrogen, NO ₂ + NO ₃ , dis- solved (mg/L as N) | Nitro-
gen,
ammonia,
dis-
solved
(mg/L
as N) | Nitrogen, ammonia + organic, total (mg/L as N) | | April 25
June 7
July 27
September 6
October 11 | <0.10
<.10
.10
.20
<.10 | 27
17
31
36
35 | 70
26
72
82
80 | 74
41
82
96
95 | <0.010
<.010
<.010
<.010
<.010 | 0
0
0 | 0.056
.055 | <0.050
<.050
.056
.055
<.050 | 0.010
.020
.020
.020
.020
<.015 | 0.20
<.20
<.20
<.20
<.20 | | Date
(1994) | Phosphorus, total (mg/L as P) | Phos
phoru
dis-
solve
(mg/I
as P) | s,
d | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(µg/L
as B) | so
(µ | ron,
lis-
lved
ug/L
Fe) | Manga-
nese,
dis-
solved
(µg/L
as Mn) | Methy-
lene
blue
active
sub-
stance
(mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 25 June 7 July 27 September 6 October 11 | 0.010
<.010
.010
.020
.020 | <0.010
<.010
<.010
<.010 |)
) | <0.010
<.010
<.010
.020
<.010 | 10
<10
<10
<10 | | 81
23
30
36
50 | 8
4
3
4
5 | 0.03
<.02
.03 | <1

<1
 | Table 5. Discharge, Fleid-Measurement, and Water-Quality Data for Reversed Creek at Dream Mountain Road 19 **Table 6.** Discharge, field-measurement, and water-quality data for Rush Creek at Highway 158, Mono County, California | Date
(1994) | Dis-
charge,
instanta-
neous
(ft ³ /s) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH water, whole field (stand- ard units) | Temper-
ature,
water
(°C) | sure | Oxygen,
dis-
solved
(mg/L) | Oxyger dis- solved (per- cent satura- tion) | ness,
total
(mg/L | Cal- cium, dis- solved (mg/L as Ca) | |-------------------------------|---|---|---|--|--|--|--|--|---| | April 26
June 7
July 27 | 1.9
1.3
e .06 | 162
200
1273 | 8.2
8.5
8.2 | 1.5
8.5
20.0 | 577
584
589 | 10.0
8.9
6.8 | 94
100
97 | 76
95
120 | 27
34
42 | | Date
(1994) | Magne-
sium,
dis-
solved
(mg/L
as Mg) | Sodium,
dis-
solved
(mg/L
as Na) | Potas-
sium,
dis-
solved
(mg/L
as K) | Bicar-
bonate
water,
wh it
field
(mg/L as
HCO ₃) | Carbonate water, whit field (mg/L a CO ₃) | li
wa
to
f
s (m | Alka- nity, ter wh tal it ield g/L as | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chlo- ride, dis- solved (mg/L as Cl) | | April 26 June 7 July 27 | 2.0
2.4
3.1 | 3.0
3.7
8.5 | 1.3
1.5
1.8 | 92
112
144 | 0
2
0 | | 75
95
18 | 7.2
7.5
4.7 | 2.1
3.6
12 | | Date
(1994) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
(SiO ²) | Solids, residue at 180°C, dissolved (mg/L) | Solids,
sum of
consti-
tuents,
dis-
solved
(mg/L) | Nitro-
gen,
nitrate,
dis-
solved
(mg/L
as N) | Nitro
gen,
NO ₂ + N
dis-
solve
(mg/I
as N | 1O ₃ , | Nitro-
gen,
ammonia,
dis-
solved
(mg/L
as N) | Nitrogen, ammonia + organic, total (mg/L as N) | | April 26
June 7
July 27 | 0.10
.10
.20 | 15
17
17 | 100
132
146 | 103
127
160 | <0.010
<.010
<.010 | <0.050
<.050
<.050 |) | 0.010
.020
.020 | <0.20
<.20
<.20 | | Date (1994) | Phos- phorus, total (mg/L as P) | Phos-
phorus,
dis-
solved
(mg/L
as P) | Phosphorus ortho, dissolved (mg/L as P) | dis-
solved
(µg/L | Iron
dis-
solve
(µg/l
as Fe | ed
L | Manga-
nese,
dis-
solved
(µg/L
as Mn) | Methylene blue active substance (mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 26
June 7
July 27 | <0.010
<.010
<.010 | <0.010
<.010
<.010 | <0.010
<.010
<.010 | 50
50
— | 7
<3
<3 | | 2
2
2 | 0.04
<.02
<.02 | <1
_
_ | ¹Specific conductance taken in laboratory. e Estimated **Table 7.** Discharge, field-measurement, and water-quality data for Rush Creek at power plant tailrace, Mono County, California | Date
(1994) | Dis-
charge,
instanta-
neous
(ft³/s) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | sure | Oxygen,
dis-
solved
(mg/L) | Oxyger dis- solved (per- cent satura- tion) | ness,
total
(mg/L | Calcium, dissolved (mg/L as Ca) | |--|--|---|--|--|---|--|--|---|---| | April 26 June 7 July 27 | 38
35
24 | 19
17
15 | 6.8
7.4
7.5 | 3.0
10.0
16.0 | 576
584
589 | 9.6
8.5
7.5 | 95
98
99 | 6
6
4 | 1.9
2.2
1.5 | | September 6
October 11 | 24
22 | 14
13 | 7.9
6.8 | 15.0
11.0 | 590
581 | 7.0
8.4 | 90
100 | 5
4 | 1.6
1.4 | | Date (1994) | Magne- sium, dis- solved (mg/L as Mg) | Sodium,
dis-
solved
(mg/L
as Na) | Potas-
sium,
dis-
solved
(mg/L
as K) | Bicar-
bonate
water,
wh it
field
(mg/L as
HCO ₃) | Carbonate water, wh it field (mg/L as CO ₃) | li
wai
to
f
(m _i | alka- nity, ter wh stal it field g/L as | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dissolved (mg/L as Cl) | | April 26
June 7
July 27
September 6
October 11 | 0.21
.22
.16
.16 | 0.90
.90
.70
.70 | 0.30
.30
.20
.30 | 15
8
7
7
5 | 0
0
0
0 | | 12
7
5
6
4 | 1.1
1.1
.70
.60 | 0.70
.60
.30
.40 | | Date
(1994) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
(SiO ²) | Solids,
residue
at
180°C,
dis-
solved
(mg/L) | Solids,
sum of
consti-
tuents,
dis-
solved
(mg/L) | Nitrogen, nitrate, dissolved (mg/L as N) | Nitro
gen,
NO ₂ + N
dis-
solve
(mg/I
as N | NO ₃ , | Nitrogen, ammonia, dissolved (mg/L as N) | Nitrogen,
ammonia
+ organic,
total
(mg/L
as N) | | April 26
June 7
July 27
September 6
October 11 | <0.10
<.10
<.10
.10 | 3.7
5.0
3.1
3.0
2.6 |
<1
<1
<1
<1 | 16
14
10
10 | <0.010
<.010
<.010
<.010
<.010 | <0.050
<.050
<.050
<.050 |)
)
) | <0.010
.020
.030
.010
.020 | <0.20
<.20
<.20
<.20
<.20 | | Date
(1994) | Phos- phorus, total (mg/L as P) | Phosphorus, dissolved (mg/L as P) | Phosphorus ortho, dissolved (mg/L as P) | dis-
solved | Iron,
dis-
solved
(µg/L
as Fe | d
, | Manga-
nese,
dis-
solved
(µg/L
as Mn) | Methy- lene blue active sub- stance (mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 26
June 7
July 27
September 6
October 11 | <0.010
<.010
<.010
.020
.010 | <0.010
<.010
<.010
<.010
<.010 | <0.010
<.010
<.010
<.010
<.010 | 10
<10
<10
<10
<10 | 13
<3
8
8
4 | | 9
9
<1
1
<1 | <0.02
<.02
<.02
— | <1
-
-
-
- | Table 7. Discharge, Field-Measurement, and Water-Quality Data for Rush Creek at Power Plant Tailrace 21 **Table 8.** Discharge, field-measurement, and water-quality data for Alger Creek at Highway 158, Mono County, California | Date (1994) | Dis-
charge,
instanta-
neous
(ft ³ /s) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | Baro- metric pres- sure (mm of Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen, dis- solved (per- cent satura- tion) | Hard- ness, total (mg/L as CaCO ₃) | Cal- cium, dis- solved (mg/L as Ca) | |--------------------|---|--|--|--|---|-------------------------------------|--|---|---| | April 26
June 7 | 3.8
13 | 65
45 | 7.6
7.9 | 2.0
8.5 |
578
584 | 9.8
9.1 | 94
102 | 27
19 | 10
7.1 | | Date (1994) | Magne- sium, dis- solved (mg/L as Mg) | Sodium,
dis-
solved
(mg/L
as Na) | Potassium, dissolved (mg/L as K) | Bicarbonate water, wh it field (mg/L as HCO ₃) | Car-
bona
wate
wh i
field
(mg/L
CO ₃ | te
r,
it
i
as | Alka-
linity,
water wh
total it
field
(mg/L as
CaCO ₃) | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dissolved (mg/L as Cl) | | April 26
June 7 | 0.46
.31 | 0.80
.70 | 0.70
.60 | 31
21 | 0 | | 25
17 | 7.4
5.1 | 0.50
.20 | | Date
(1994) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | Solids,
residue
at
180°C,
dis-
solved
(mg/L) | Solids, sum of constituents, dissolved (mg/L) | ge
nitr
di
sol
(m | tro- en, rite, is- ved g/L N) | Nitrogen, NO ₂ + NO ₃ , dissolved (mg/L as N) | Nitrogen,
ammonia,
dis-
solved
(mg/L
as N) | Nitrogen, ammonia + organic, total (mg/L as N) | | April 26
June 7 | <0.10
<.10 | 7.0
5.4 | 38
30 | 42
30 | <0.0
<.0 | | <0.050
<.050 | <0.010
.010 | <0.20
<.20 | | Date (1994) | Phosphorus, total (mg/L as P) | Phosphorus, dissolved (mg/L as P) | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(µg/L
as B) | di
sol | on,
is-
ved
g/L
Fe) | Manga-
nese,
dis-
solved
(µg/L
as Mn) | Methylene blue, active substance (mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 26
June 7 | <0.010
<.010 | <0.010
<.010 | <0.010
<.010 | <10
10 | 1 | 1
5 | <1
1 | <0.02
<.02 | <1
— | **Table 9.** Discharge, field-measurement, and water-quality data for Rush Creek above Grant Lake, Mono County, California | Date (1994) | Dis-
charge,
instanta-
neous
(ft ³ /s) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | Baro- metric pres- sure (mm of Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen
dis-
solved
(per-
cent
satura-
tion) | Hard-
ness,
total
(mg/L
as
CaCO ₃) | Calcium, dissolved (mg/L as Ca) | |--|---|---|--|---|--|--|---|---|---| | April 26
June 7
July 27
September 6
October 11 | 60
79
30
25
31 | 51
149
139
41
41 | 7.6
8.0
7.9
7.8
7.2 | 8.0
14.0
22.0
19.0
15.0 | 579
585
590
594
582 | 9.0
8.1
6.5
7.3
8.0 | 100
103
97
101
104 | 19
18
14
15
16 | 6.5
6.2
4.9
5.1
5.5 | | Date
(1994) | Magne- sium, dis- solved (mg/L as Mg) | Sodium,
dis-
solved
(mg/L
as Na) | Potassium, dissolved (mg/L as K) | Bicarbonate water, wh it field (mg/L as HCO ₃) | Carbonate water, wh it field (mg/L as | lin
wate
tota
fie
s (mg, | ka- uity r, wh al it eld /L as CO ₃) | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dissolved (mg/L as Cl) | | April 26
June 7
July 27
September 6
October 11 | 0.61
.51
.44
.46 | 2.0
1.5
1.4
1.4
1.5 | 0.70
.60
.50
.60 | 23
23
18
20
19 | 0
0
0
0 | 19
19
1.
10 | 9
5
6 | 2.8
3.4
2.3
2.0
2.6 | 1.1
.90
.60
.60 | | Date
(1994) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
(SiO ²) | Solids,
residue
at
180°C,
dis-
solved
(mg/L) | Solids,
sum of
consti-
tuents,
dis-
solved
(mg/L) | Nitrogen, nitrate, dissolved (mg/L as N) | Nitro
gen,
NO ₂ + N
dis-
solve
(mg/l
as N | NO₃,
d
L | Nitrogen, ammonia, dissolved (mg/L as N) | Nitrogen,
ammonia
+ organic,
total
(mg/L
as N) | | April 26
June 7
July 27
September 6
October 11 | <0.10
<.10
<.10
.10
<.10 | 8.3
8.0
6.8
6.7
7.3 | 20
14
24
—
14 | 33
32
26
27
28 | <0.010
<.010
<.010
<.010
<.010 | <0.050
<.050
<.050
<.050
<.050 |)
)
) | 0.010
.020
.020
.020
.020 | 0.40
<.20
<.20
<.20
<.20 | | Date
(1994) | Phosphorus, total (mg/L as P) | Phosphorus, dissolved (mg/L as P) | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(μg/L
as B) | Iron,
dis-
solved
(µg/L
as Fe) | Manga
nese,
dis-
solveα
(μg/L
as Mr | d
L | Methylene blue active substance (mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 26 June 7 July 27 September 6 October 11 | 0.020
.020
<.010
<.010
.010 | <0.010
<.010
<.010
<.010
<.010 | <0.010
<.010
<.010
<.010
<.010 | 20
<10
20
10
20 | 16
12
15
15
24 | 4
5
3
5
11 | | 0.04
<.02
<.02 | <1
-
-
- | ¹Specific conductance taken in laboratory. Table 10. Water-quality data for Gull Lake (site 1), Mono County, California [ft, feet; µg/L, microgram per liter; mg/L, milligram per liter; °C, degree Celsius; wh, whole; it, incremental titration; recov., recoverable. | Date
(1994) | Time | Sam-
pling
depth
(ft) | Chlor-a phyto- plank- ton chromo fluorom (µg/L) | Chlor-b phyto- plank- ton chromo fluorom (µg/L) | Hard-
ness,
total
(mg/L
as
CaCO ₃) | Calcium,
dis-
solved
(mg/L
as Ca) | Magnesium, dissolved (mg/L as Mg) | |----------------|------|--------------------------------|---|---|---|---|-----------------------------------| | April 27 | 1013 | 0 | | _ | | _ | | | • | 1015 | 3.3 | 0.300 | <0.100 | 47 | 17 | 1.2 | | | 1030 | 19.7 | | _ | 45 | 16 | 1.2 | | | 1040 | 39.4 | _ | _ | 45 | 16 | 1.2 | | June 8 | 0930 | 3.3 | <.100 | <.100 | 50 | 18 | 1.3 | | | 0935 | 19.7 | .100 | <.100 | | | | | | 0940 | 29.5 | | _ | 48 | 17 | 1.3 | | | 0945 | 45.9 | _ | _ | 50 | 18 | 1.3 | | July 25 | 1520 | 0 | _ | | | _ | | | • | 1524 | 3.3 | .400 | <.100 | 48 | 17 | 1.3 | | | 1531 | 19.7 | .400 | <.100 | | - | | | | 1536 | 32.8 | | | 48 | 17 | 1.3 | | | 1543 | 42.7 | | _ | 50 | 18 | 1.3 | | September 7 | 0925 | 3.3 | _ | _ | 48 | 17 | 1.3 | | • | 0935 | 19.7 | .300 | .100 | | - | _ | | | 0945 | 36.1 | | _ | 50 | 18 | 1.3 | | | 0949 | 42.7 | | | 50 | 18 | 1.3 | | October 12 | 1137 | 3.3 | 1.70 | .600 | 50 | 18 | 1.3 | | | 1144 | 19.7 | 1.50 | .500 | | | | | | 1147 | 29.5 | 2.00 | .500 | 50 | 18 | 1.3 | | | 1156 | 42,7 | | _ | 53 | 19 | 1.4 | <, actual value is less than value shown; —, no data] | Sodium,
dis-
solved
(mg/L
as Na) | Potas- sium, dis- solved (mg/L as as K) | Bicar-
bonate
water,
wh it
field
(mg/L as
HCO ₃) | Carbonate water, wh it field (mg/L as CO ₃) | Alka- linity water, wh total it field (mg/L CaCO ₃) | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dissolved (mg/L as Cl) | Fluo-
ride,
dis-
solved
(mg/L
as F) | |--|---|--|---|---|---|----------------------------------|--| | _ | | _ | _ | | _ | _ | _ | | 8.4 | 2.6 | 75 | 0 | 63 | 5.0 | 1.6 | 0.10 | | 8.3 | 2.7 | 75 | 0 | 61 | 4.9 | 1.4 | .10 | | 8.3 | 2.7 | 76 | 0 | 62 | 4.9 | 3.0 | .10 | | 7.8 | 2.8 | 72 | 0 | 62 | 5.5 | 1.9 | .10 | | _ | _ | - | | - | | _ | | | 7.5 | 2.8 | 76 | 1 | 63 | 5.4 | 1.9 | .10 | | 8.4 | 2.9 | 80 | 0 | 65 | 5.2 | 2.0 | .10 | | _ | _ | | _ | _ | _ | | | | 8.8 | 2.6 | 73 | 0 | 60 | 5.2 | 1.9 | 10 | | 8.7 | 2.7 | 76 | 0 | 63 | 5.1 | 2.0 | .10 | | 8.7 | 4.0 | 75 | 0 | 61 | 4.8 | 2.1 | .10 | | 8.8 | 2.8 | 82 | 0 | 67 | 4.7 | 1.9 | .20 | | 8.6 | 2.7 |
78 | 0 |
64 | 4.6 | 1.8 | .20 | | 8.4 | 2.8 | 79 | Ŏ | 65 | 4.2 | 1.9 | .20 | | | | • • • | ŭ | | -T+= | 2.0 | .20 | | 8.9 | 2.8 | 77 | 0 | 63 | 5.5 | 1.8 | .10 | | _ | _ | | _ | _ | | _ | | | 9.0 | 2.8 | 75
70 | 0 | 62 | 5.4 | 1.8 | .10 | | 9.2 | 2.9 | 78 | 0 | 64 | 5.4 | 1.8 | .10 | Table 10. Water-quality data for Gull Lake (site 1), Mono County, California—Continued | | | | | | | | | | |----------------|------|--------------------------------|--|--|---|---|---|---| | Date
(1994) | Time | Sam-
pling
depth
(ft) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | Solids, residue at 180°C, dis- solved (mg/L) | Solids,
sum of
consti-
tuents,
dis-
solved
(mg/L) | Nitrogen, nitrite dis- solved (mg/L as N) | Nitro- gen, NO ₂ + NO ₃ , dis- solved (mg/L as N) |
Nitrogen,
ammonia,
dis-
solved
(mg/L
as N) | | April 27 | 1013 | 0 | _ | _ | _ | _ | _ | | | | 1015 | 3.3 | 3.6 | 76 | 76 | <0.010 | <0.050 | 0.010 | | | 1030 | 19.7 | 3.6 | 70 | 75 | <.010 | <.050 | .010 | | | 1040 | 39.4 | 3.6 | 72 | 77 | <.010 | <.050 | .010 | | June 8 | 0930 | 3.3 | 3.3 | 68 | 76 | <.010 | <.050 | .060 | | | 0935 | 19.7 | | _ | _ | _ | | | | | 0940 | 29.5 | 3.2 | 80 | 78 | .010 | <.050 | ` . 07 0 | | | 0945 | 45.9 | 5.7 | 78 | 83 | <.010 | <.050 | .060 | | July 25 | 1520 | 0 | | _ | | | _ | | | • | 1524 | 3.3 | 3.8 | 78 | 77 | <.010 | <.050 | .020 | | | 1531 | 19.7 | | _ | _ | _ | _ | _ | | | 1536 | 32.8 | 3.0 | 76 | 77 | <.010 | <.050 | .020 | | | 1543 | 42.7 | 6.2 | 82 | 83 | <.010 | <.050 | .180 | | September 7 | 0925 | 3.3 | 3.6 | 80 | 81 | <.010 | <.050 | .010 | | • | 0935 | 19.7 | _ | | _ | _ | | | | | 0945 | 36.1 | 3.6 | 98 | 79 | <.010 | <.050 | .020 | | | 0949 | 42.7 | 7.0 | 80 | 83 | <.010 | <.050 | .020 | | October 12 | 1137 | 3.3 | 2.6 | 80 | 79 | <.010 | <.050 | .020 | | | 1144 | 19.7 | _ | _ | _ | _ | _ | | | | 1147 | 29.5 | 2.5 | 68 | 78 | <.010 | <.050 | .020 | | | 1156 | 42.7 | 2.8 | 82 | 81 | <.010 | <.050 | .020 | | Nitrogen, ammonia + organic, total (mg/L as N) | Phos-
phorus,
total
(mg/L
as P) | Phos- phorus, dis- solved (mg/L as P) | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(mg/L
as B) | Iron,
dis-
solved
(µg/L
as Fe) | Manga-
nese,
dis-
solved
(µg/L
as Mn) | Methylene blue active substance (mg/L) | Oil and grease, total recov. gravimetric (mg/L) | |--|---|---------------------------------------|---|--|--|--|--|---| | | _ | | | | _ | | | <1 | | 0.20 | < 0.010 | <0.010 | < 0.010 | 20 | <3 | <1 | 0.03 | | | .20 | <.010 | <.010 | <.010 | 20 | 3 | <1 | .03 | | | .30 | .020 | <.010 | <.010 | 20 | <3 | 4 | <.02 | _ | | <.20 | <.010 | <.010 | <.010 | 20 | < 3 | 2 | <.02 | _ | | | | | | | | _ | _ | _ | | .40 | <.010 | <.010 | <.010 | 20 | <3 | 4 | <.02 | _ | | .40 | .040 | .040 | .020 | 20 | 11 | 230 | <.02 | _ | | | | | _ | | _ | _ | | <1 | | <.20 | .010 | .020 | <.010 | 20 | <3 | <1 | .03 | _ | | | | | _ | | _ | _ | | | | <.20 | .020 | .020 | <.010 | 20 | <3 | 2 | <.02 | _ | | .80 | .200 | .140 | .150 | 30 | 10 | 300 | .05 | _ | | .30 | .020 | <.010 | <.010 | 20 | <3 | 3 | | _ | | | | | _ | | | _ | | _ | | .40 | .030 | <.010 | <.010 | 20 | 3 | 12 | | _ | | 1.5 | .180 | .070 | .060 | 20 | 6 | 310 | _ | | | .40 | .030 | <.010 | <.010 | 20 | <3 | 21 | .03 | | | | _ | | _ | | | | | _ | | .30 | .020 | .010 | <.010 | 20 | <3 | 21 | .03 | | | .40 | .020 | .010 | .010 | 10 | 7 | 58 | | | Table 11. Field measurements for vertical water profiles of Gull Lake (site 1), Mono County, California [ft, feet; µS/cm, microsiemen per centimeter at 25°C; °C, degree Celsius; mm, millimeter; mg/L milligram per liter] | Date
(1994) | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans-
par-
ency
(Secchi
disk)
(ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water | Baro-
metric
pres-
sure
(mm
of
Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen, dis- solved (per- cent satura- tion) | |----------------|--------------|--|--------------------------------|--|---|--|----------------------------|--|-------------------------------------|--| | April 27 | 1013 | 39.4 | 0 | 13.1 | 134 | 7.8 | 9.0 | 569 | 8.7 | 101 | | | 1015 | | 3.3 | | 136 | 8.1 | 9.0 | 569 | 8.8 | 102 | | | 1018 | | 6.6 | | 136 | 8.1 | 9.0 | 569 | 8.8 | 101 | | | 1021 | | 9.9 | | 136 | 8.1 | 9.0 | 569 | 8.8 | 101 | | | 1024 | | 13.1 | | 136 | 8.1 | 9.0 | 569 | 8.7 | 101 | | | 1027 | | 16.4 | | 136 | 8.1 | 9.0 | 569 | 8.7 | 101 | | | 1030 | | 19.7 | | 136 | 8.1 | 9.0 | 569 | 8.9 | 103 | | | 1032 | | 23.0 | | 136 | 8.1 | 8.5 | 569 | 8.6 | 99 | | | 1034 | | 26.2 | | 136 | 8.1 | 8.5 | 569 | 8.8 | 101 | | | 1036 | | 29.5 | | 135 | 8.1 | 7.5 | 569 | 9.4 | 105 | | | 1038 | | 32.8 | | 135 | 8.1 | 6.5 | 569 | 9.3 | 103 | | | 1039 | | 36.1 | | 135 | 7.9 | 6.5 | 569 | 8.4 | 92 | | | 1040 | | 39.4 | | 135 | 7.7 | 6.0 | 569 | 7.8 | 85 | | June 8 | 0929 | 47.6 | 0 | 21.0 | 137 | 7.4 | 14.0 | 580 | 8.1 | 104 | | | 0930 | | 3.3 | | 138 | 7.8 | 14.0 | 580 | 8.1 | 104 | | | 0931 | | 6.6 | | 138 | 8.1 | 14.0 | 580 | 8.1 | 104 | | | 0932 | | 9.9 | | 137 | 8.2 | 14.0 | 580 | 8.1 | 104 | | | 0933 | | 13.1 | | 137 | 8.3 | 14.0 | 580 | 8.0 | 103 | | | 0934 | | 16.4 | | 137 | 8.3 | 14.0 | 580 | 8.1 | 104 | | | 0935 | | 19.7 | | 137 | 8.4 | 14.0 | 580 | 8.1 | 103 | | | 0936 | | 23.0 | | 137 | 8.4 | 13.5 | 580 | 8.0 | 102 | | | 0938 | | 26.2 | | 136 | 8.4 | 13.0 | 580 | 8.3 | 104 | | | 0940 | | 29.5 | | 136 | 8.2 | 11.5 | 580 | 8.6 | 104 | | | 0941 | | 32.8 | | 136 | 8.2 | 10.0 | 580 | 7.4 | 87 | | | 0942 | | 36.1 | | 136 | 8.1 | 9.5 | 580 | 6.8 | 79
50 | | | 0943 | | 39.4 | | 137 | 7.9 | 8.5 | 580 | 4.6 | 52 | | | 0944 | | 42.7 | | 139 | 7.7 | 7.5 | 580 | .7 | 8 | | | 0945
0946 | | 45.9
46.9 | | 141
140 | 7.6
7.5 | 7.0
7.0 | 580
580 | .2
.1 | 2
1 | | Terles Of | 1500 | 44.6 | 0 | 22 Å | 135 | 7.6 | 20.5 | 584 | 7.0 | 102 | | July 25 | 1520
1524 | 44.6 | 0
3.3 | 23.0 | 135 | 7.0
7.9 | 20.5 | 584 | 6.9 | 101 | | | | | 6.6 | | 136 | 8.0 | 20.5 | 584 | 6.9 | 100 | | | 1526
1528 | | 9.9 | | 136 | 8.0 | 20.0 | 584 | 6.8 | 99 | | | 1529 | | 13.1 | | 136 | 8.0 | 20.0 | 584 | 6.8 | 99 | | | 1530 | | 16.4 | | 136 | 8.0 | 20.0 | 584 | 6.8 | 99 | | | 1530 | | 19.7 | | 156 | 8.0 | 20.0 | 584 | 6.8 | 98 | | | 1531 | | 23.0 | | 136 | 8.0 | 20.0 | 584 | 6.8 | 98 | | | 1532 | • | 26.2 | | 134 | 8.0 | 18.5 | 584 | 6.7 | 94 | | | 1534 | | 29.5 | | 134 | 8.0 | 16.5 | 584 | 7.1 | 96 | | | 1536 | | 32.8 | | 132 | 7.8 | 12.5 | 584 | 5.5 | 68 | | | 1538 | | 36.1 | | 133 | 7.5 | 11.0 | 584 | 3.4 | 40 | | | 1542 | | 39.4 | | 134 | 7.3 | 9.5 | 584 | .2 | | | | 1543 | | 42.7 | | 142 | 7.2 | 8.5 | 584 | .1 | 2
1 | | | 1545 | | 44.3 | | 135 | 7.1 | 8.5 | 584 | .1 | 1 | **Table 11.** Field measurements for vertical water profiles of Gull Lake (site 1), Mono County, California—Continued | Date
(1994) | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans- par- ency (Secchi disk) (ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | Baro- metric pres- sure (mm of Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen,
dis-
solved
(per-
cent
satura-
tion) | |----------------|------|--|--------------------------------|-------------------------------------|---|--|------------------------------------|------------------------------------|-------------------------------------|--| | September 7 | 0922 | 44.0 | 0 | 19.0 | 141 | 7.6 | 17.5 | 580 | 7.4 | 103 | | Doptomoor / | 0925 | | 3.3 | | 142 | 7.8 | 17.5 | 580 | 7.4 | 103 | | | 0927 | | 6.6 | | 142 | 8.0 | 17.5 | 580 | 7.4 | 103 | | | 0928 | | 9.9 | | 142 | 8.0 | 17.5 | 580 | 7.3 | 101 | | | 0930 | | 13.1 | | 142 | 8.1 | 17.5 | 580 | 7.3 | 101 | | | 0932 | | 16.4 | | 142 | 8.2 | 17.5 | 580 | 7.3 | 101 | | | 0935 | | 19.7 | | 142 | 8.2 | 17.5 | 580 | 7.3 | 101 | | | 0937 | | 23.0 | | 142 | 8.2 | 17.5 | 580 | 7.3 | 101 | | | 0938 | | 26.2 | | 142 | 8.2 | 17.5 | 580 | 7.2 | 100 | | | 0940 | | 29.5 | | 142 | 8.2 | 17.5 | 580 | 7.2 | 100 | | | 0942 | | 32.8 | | 142 | 8.1 | 17.5 | 580 | 7.0 | 97 | | | 0945 | | 36.1 | | 142 | 8.2 | 17.5 | 580 | 7.3 | 101 | | | 0946 | | 39.4 | | 141 | 7.4 | 12.0 | 580 | .2 | 2 | | | 0949 | | 42.7 | | 144 | 7.2 | 9.5 | 580 | .1 | 1 | | October 12 | 1130 | 43.0 | 0 | 11.2 | 148 | 8.3 | 13.0 | 572 | 7.0 | 89 | | | 1137 | | 3.3 | | 145 | 8.0 | 13.0 | 572 | 7.0 | 89 | | | 1140 | | 6.6 | | 145 | 7.9 | 13.0 | 572 | 7.0 | 89 | | | 1141 | | 9.9 | | 145 | 7.9 | 13.0 | 572 | 6.9 | 87 | | | 1142 | | 13.1 | | 145 | 7.9 | 13.0 | 572 | 6.9 | 87 | | | 1143 | | 16.4 | | 145 | 7.8 | 13.0 | 572 | 6.9 | 87 | | | 1144 | | 19.7 | | 145 | 7.8 | 13.0 | 572 | 6.9 | 87 | | | 1145 | | 23.0 | | 145 | 7.8 | 13.0 | 572 | 6.9 | 87 | | | 1146 | | 26.2 | | 145 | 7.8 | 13.0 | 572 | 6.8 | 86 | | | 1147 | | 29.5 | | 145 | 7.8 | 12.5 | 572 | 6.8 | 86 | | | 1148 | | 32.8 | | 145 | 7.8 | 12.5 | 572 | 6.6 | 83 | | | 1149 | | 36.1 | | 146 | 7.8 | 12.5 | 572 | 6.3 | 79 | | | 1156 | | 42.7 | | 146 | 7.6 | 12.5 | 572 | 3.8 | 48 | Table 12. Water-quality data for Gull Lake (site 2), Mono County, California [ft, feet; µg/L, microgram per liter; mg/L, milligram per liter; °C, degree Celsius; wh, whole; it, incremental titration; recov., recoverable. | Date | Time | Sam-
pling
depth
(ft) | Chlor-a
phyto-
plank-
ton
chromo
fluorom
(µg/L) | Chlor-b phyto- plank- ton chromo fluorom (µg/L) | Hard- ness, total (mg/L as CaCO ₃) | Calcium,
dis-
solved
(mg/L
as Ca) | Magne- sium, dis- solved (mg/L as Mg) | Sodium,
dis-
solved
(mg/L
as Na) | |-------------
--------------------------------------|----------------------------------|---|---|--|---|---------------------------------------|--| | 1994 | | | | | | | | | | April 26 | 1625
1635
1645 | 3.3
29.5
52.5 | 0.200
—
— | <0.100
—
— | 45
45
45 | 16
16
16 | 1.2
1.2
1.2 | 8.5
8.4
8.2 | | June 8 | 1342
1350
1355
1400 | 3.3
19.7
36.1
49.2 | <.100
<.100
— | <.100
<.100
— | 50
50
50 | 18
18
18 | 1.3
1.3
1.3 | 8.6

7.8
9.3 | | July 26 | 0817
0819
0825
0828
0841 | 0
3.3
19.7
29.5
49.2 | .400
.300
.100 | <.100
<.100
<.100 | 48

48
50 | 17

17
18 | 1.3
-
1.3
1.3 | 8.9

8.8
8.7 | | September 7 | 1126
1132
1140
1144 | 3.3
19.7
36.1
42.7 | .300
.300
.200 | <.100
<.100
<.100 | 48

48
50 | 17
17
18 | 1.3
-
1.3
1.3 | 8.5

8.5
8.4 | | October 12 | 1406
1415
1418
1430 | 3.3
19.7
29.5
55.8 | .500
.400
.700 | .300
.200
.300 | 50
50
50 | 18
18
18 | 1.3
-
1.3
1.3 | 8.7
—
9.0
8.8 | | 1995 | | | | | | | | | | March 8 | 0940
0950
0959
1006 | 3.3
19.7
39.4
52.5 | .500
1.000
— | <.100
.200 | 47
50
50 | 17
 | 1.2
-
1.2
1.3 | 8.2

8.5
8.5 | <, actual value is less than value shown; —, no data] | Potas-
sium,
dis-
solved
(mg/L
as K) | Bicarbonate water, wh it field (mg/L as HCO ₃) | Carbonate water, wh it field (mg/L as CO ₃) | Alka- linity water, wh total it field (mg/L CaCO ₃) | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chlo- ride, dis- solved (mg/L as Cl) | Fluo-
ride,
dis-
solved
(mg/L
as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | |---|--|---|---|---|--------------------------------------|--|--| | 2.7 | 77 | 0 | 63 | 5.0 | 1.9 | 0.10 | 3.6 | | 2.6 | 77
76 | 0 | 62 | 5.0
5.0 | 1.9 | .10 | 3.5 | | 2.8 | 76 | ŏ | 63 | 5.2 | 3.7 | .10 | 4.7 | | 2.7 | 73 | 1 | 61 | 5.4 | 2.0 | .10 | 3.5 | | 2.7 |
76 | _ 0 | 62 | 5.3 | 2.0 |
.10 | 3.9 | | 2.7
2.9 | 76
77 | 0 | 63 | 5.3
5.0 | 2.0 | .10
.10 | 6.8 | | | | | | | | | | | 2.5 | 74 | 0 | 61 | 5.2 | 2.0 | .10 | 3.8 | | _ , | | | - | _ | | _ | | | 2.6
2.8 | 74
76 | 0
0 | 61
63 | 5.1
4.1 | 2.1
2.1 | .10
.10 | 3.5
8.5 | | 2.0 | 76 | U | 63 | 4.1 | 2.1 | .10 | 6.3 | | 2.7 | 78 | 0 | 64 | 4.7 | 1.8 | .20 | 3.8 | | 2.7 | 80 | 0 | 66 | 4.6 | 1.8 | .20 | 3.7 | | 2.9 | 80 | Ö | 65 | 4.2 | 1.9 | .20 | 7.0 | | 2.9 | 63 | 0 | 77 | 5.3 | 1.8 | .10 | 2.4 | | | -
76 | 0 | 63 | | 1.8 | 10 | 2.5 | | 2.9
2.2 | 76
92 | 0 | 75 | 5.4
2.0 | 1.8 | .10
.10 | 13 | | | <i></i> | v | ,,, | 2.0 | 1.2 | .20 | | | 2.9 | 71 | 0 | 58 | 4.7 | 2.0 | .10 | 4.6 | | 3.0 | 73 | 0 | 60 | 4.7 | 1.9 | .10 | 4.6 | | 3.1 | 82 | Ö | 67 | 4.6 | 1.9 | .10 | 5.4 | Table 12. Water-quality data for Gull Lake (site 2), Mono County, California—Continued | | | | ` | | | | | | |-------------|------|-------|------------|------------|----------------|----------------|----------------|------------| | | | | Solids, | Solids, | Nitro- | Nitro- | Nitro- | Nitro- | | | | • | residue | sum of | gen, | gen, | gen, | gen, | | | | Sam- | at | consti- | nitrite, | $NO_2 + NO_3$ | ammonia | ammonia | | Date | Time | pling | 180°C, | tuents, | dis-
solved | dis-
solved | dis-
solved | + organic, | | | | depth | dis- | dis- | | | | total | | | | (ft) | solved | solved | (mg/L | (mg/L | (mg/L | (mg/L | | | | | (mg/L) | (mg/L) | as N) | as N) | as N) | as N) | | 1994 | | | | | | | | | | April 26 | 1625 | 3.3 | 80 | 77 | <0.010 | <0.050 | 0.020 | 0.40 | | | 1635 | 29.5 | 76 | 76 | <.010 | <.050 | .020 | .40 | | | 1645 | 52.5 | 66 | 79 | <.010 | <.050 | .020 | .80 | | June 8 | 1342 | 3.3 | 88 | 7 9 | <.010 | <.050 | .050 | .30 | | | 1350 | 19.7 | _ | | 4,515 | | _ | ` | | | 1355 | 36.1 | 68 | 79 | <.010 | <.050 | .040 | .60 | | | 1400 | 49.2 | 84 | 84 | <.010 | <.050 | .090 | .40 | | July 26 | 0817 | 0 | _ | | | | _ | | | , | 0819 | 3.3 | 7 8 | 77 | <.010 | <.050 | .030 | .50 | | | 0825 | 19.7 | _ | | | | | | | | 0828 | 29.5 | 86 | 77 | <.010 | <.050 | .020 | <.40 | | | 0841 | 49.2 | 82 | 84 | <.010 | <.050 | .020 | <.20 | | September 7 | 1126 | 3.3 | 78 | 78 | <.010 | <.050 | .020 | .30 | | • | 1132 | 19.7 | _ | | | | _ | | | | 1140 | 36.1 | 78 | 79 | <.010 | <.050 | .010 | .30 | | | 1144 | 42.7 | 84 | 84 | <.010 | <.050 | .010 | .30 | | October 12 | 1406 | 3.3 | 76 | 72 | <.010 | <.050 | .020 | .30 | | | 1415 | 19.7 | _ | | _ | | _ | | | | 1418 | 29.5 | 82 | 78 | <.010 | <.050 | .020 | .50 | | | 1430 | 55.8 | 72 | 97 | <.010 | <.050 | 1.00 | 1.4 | | 1995 | | | | | | | | | | March 8 | 0940 | 3.3 | 92 | 76 | <.010 | .080 | .130 | .60 | | | 0950 | 19.7 | | | | | | | | | 0959 | 39.4 | 90 | 7 9 | <.010 | .080 | .280 | .50 | | | 1006 | 52.5 | 88 | 85 | <.010 | .070 | .540 | .90 | | Phosphorus, total (mg/L as P) | Phosphorus, dissolved (mg/L as P) | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(mg/L
as B) | Iron,
dis-
solved
(µg/L
as Fe) | Manga-
nese,
dis-
solved
(µg/L
as Mn) | Methy-
lene
blue
active
sub-
stance
(mg/L) | Oil and grease, total recov. gravimetric (mg/L) | |-------------------------------|-----------------------------------|---|--|--|--|--|---| | | | | | | | | | | 0.010
.020
.060 | <0.010
.010
.010 | <0.010
<.010
<.010 | 20
20
20 | 5
<3
13 | 1
1
120 | <.02
.04
.04 | _
_ | | .000 | | | | 13 | | | | | <.010 | <.010 | <.010 | 20 | 4 | 3 | <.02 | | | .070 | <.010 | <.010 | 10 | 5 | 27 | <.02 | | | .070
.070 | .070 | .050 | 20 | 20 | 410 | <.02 | _ | | | | | | | | | | | <.010 | .010 |
<.010 | 20 | 5 | <u> </u> |
.04 | <1
— | | | _ | | _ | | | | | | .020 | .020 | <.010 | 20 | <3 | <1 | <.02 | | | <.010 | .020 | <.010 | 30 | 40 | 550 | .03 | | | <.010 | <.010 | <.010 | 20 | <3 | 2 | | _ | | | - | | _ | | | | | | <.010 | <.010 | <.010 | 30 | <3 | 8 | | _ | | .070 | .050 | .060 | 20 | 6 | 280 | | | | .020 | <.010 | <.010 | 20 | <3 | 20 | .04 | | | | _ | | | - | | | | | .050 | .010 | <.010 | 20 | 5 | 21 | <.02 | _ | | .360 | .370 | .390 | 30 | 380 | 1000 | .03 | _ | | .040 | .020 | .020 | 10 | 6 | 3 | | | | -050 |
.040 | | 20 | | _ | _ | _ | | .050
.080 | .040
.070 | .040
.070 | 20
10 | 3
10 | 67
300 | _ | _ | Table 13. Field measurements for vertical water profiles of Gull Lake (site 2), Mono County, California [ft, feet; µS/cm, microsiemen per centimeter at 25°C; °C, degree Celsius; mm, millimeter; mg/L milligram per liter] | Date | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans-
par-
ency
(Secchi
disk)
(ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | Baro- metric pres- sure (mm of Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen,
dis-
solved
(per-
cent
satura-
tion) | |----------|--|--|--|--|--|--|---|--|--|--| | 1994 | | | | | | | | | | | | April 26 | 1624
1625
1626
1627
1628
1629
1630
1631
1632
1635
1636
1637
1638
1639
1640
1641
1645 | 59.1 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5
32.8
36.1
39.4
42.7
45.9
49.2
52.5
55.8 | 16.4 | 137
137
137
137
137
137
137
137
136
136
136
136
136
137
137 | 8.0
8.2
8.3
8.3
8.4
8.4
8.4
8.4
8.7
7.8
7.7
7.6
7.6
7.5
7.5 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0
8.5
8.5
6.5
6.0
6.0
6.0
6.0
6.0 |
569
569
569
569
569
569
569
569
569
569 | 8.9
8.9
8.9
8.9
8.8
8.8
9.0
9.2
8.5
7.7
6.4
6.5
6.2
5.7
5.5 | 104
103
103
103
103
103
102
102
103
101
92
83
70
70
67
62
59
56 | | June 8 | 1647
1341
1342
1343
1344
1345
1348
1350
1351
1352
1353
1354
1355
1357
1358
1359
1400
1401
1402 | 56.1 | 59.1
0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5
32.8
36.1
39.4
42.7
45.9
49.2
52.5
54.8 | 19.0 | 138
134
134
134
134
134
135
135
135
136
137
137
138
139
140
141 | 7.4
8.4
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.7
7.6
7.5
7.4
7.3 | 6.0
15.0
14.5
14.5
14.0
14.0
14.0
14.0
13.0
12.0
10.0
9.5
8.5
8.0
7.5
7.0
7.0 | 569 581 581 581 581 581 581 581 581 581 581 | 4.1
8.2
8.3
8.3
8.3
8.3
8.2
8.2
8.6
8.7
7.4
6.5
4.2
1.4
.5
.2 | 44
107
106
107
107
106
104
104
108
106
86
75
47
15
5 | | July 26 | 0817
0819
0820
0822
0823
0824
0825
0826
0827
0828
0830
0833
0836
0837
0840
0841 | 52.5 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5
32.8
36.1
39.4
42.7
45.9
49.2
52.5 | 29.9 | 145
145
144
144
144
144
144
142
140
139
140
142
142
143
144 | 7.5
6.7
7.3
7.5
7.7
7.8
7.9
8.0
8.1
8.0
8.0
7.9
7.7
7.4
7.2
7.1
7.0
7.0 | 20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | 586
586
586
586
586
586
586
586
586
586 | 6.8
6.8
6.8
6.8
6.7
6.6
6.6
7.0
6.4
4.5
0.2
0.1
0.1 | 98
98
98
98
98
97
95
92
93
80
54
2
1 | **Table 13.** Field measurements for vertical water profiles of Gull Lake (site 2), Mono County, California—*Continued* | Date | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans-
par-
ency
(Secchi
disk)
(ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | Baro- metric pres- sure (mm of Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen,
dis-
solved
(per-
cent
satura-
tion) | |----------------------|--|--|--|--|--|--|---|--|--|---| | 1994 | | | | | | | | | | | | September 7 | 1125
1126
1127
1128
1129
1130
1132
1133
1135
1136
1138
1140
1142
1144
1146
1148
1150 | 56.1 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5
32.8
36.1
39.4
42.7
45.9
49.2
52.5 | 18.0 | 144
144
143
143
143
143
143
143
143
142
142
141
142
144
147
148 | 8.2
8.2
8.2
8.2
8.2
8.2
8.2
8.2
7.7
7.4
7.3
7.0
6.9
6.8 | 18.0
18.0
18.0
18.0
17.5
17.5
17.5
17.5
17.5
17.5
10.0
9.0
8.5
8.5 | 580
580
580
580
580
580
580
580
580
580 | 7.5
7.4
7.4
7.4
7.4
7.4
7.4
7.3
7.1
3.0
0.2
0.1
0.1
0.1 | 104
103
103
103
103
103
103
103
101
98
39
2
1
1
1 | | October 12 | 1400
1406
1409
1410
1411
1413
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1429
1430 | 55.8 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5
32.8
36.1
39.4
42.7
45.9
49.2
52.5
55.8 | 9.5 | 146
146
146
145
145
145
145
145
145
145
145
145
145 | 8.0
8.0
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | 572
572
572
572
572
572
572
572
572
572 | 7.0
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9 | 89
87
87
87
87
87
87
87
87
87
87
87
87
1 | | 1995 | | | | | | | 5.2 | • | ¥ | - | | March 8 ¹ | 0938
0940
0942
0945
0947
0950
0951
0952
0955
0956
0957
0958
0959
1000
1002
1005
1006
1007 | 54.1 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5
32.8
36.1
39.4
42.7
45.9
49.2
52.5
54.1 | (2) | 110
137
138
140
141
142
142
142
142
142
143
145
146
148
148 | 7.4 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 | .2
1.8
2.7
3.5
3.6
3.8
3.8
3.9
4.0
4.0
4.1
4.2
4.2
4.2
4.2
4.2 | 575
575
575
575
575
575
575
575
575
575 | 6.7
6.1
6.2
6.4
6.6
6.5
6.4
6.2
6.1
5.9
5.5
5.1
2.6
1.7
.7 | 61
58
61
64
66
65
63
62
60
58
52
26
17
7
6 | ¹Approximately 2 feet of ice was on the lake when it was sampled. ²No data because of ice cover on lake. Table 14. Water-quality data for Gull Lake (site 3), Mono County, California [ft, feet; µg/L, microgram per liter; mg/L, milligram per liter; °C, degree Celsius; wh, whole; it, incremental titration; <, actual value is | Date | Time | Sam-
pling
depth
(ft) | Chlor-a phyto- plank- ton chromo fluorom (µg/L) | Chlor-b phyto- plank- ton chromo fluorom (µg/L) | Hard- ness, total (mg/L as CaCO ₃) | Calcium,
dis-
solved
(mg/L
as Ca) | Magne- sium, dis- solved mg/L as Mg) | Sodium,
dis-
solved
mg/L
as Na) | |------------|------------------------------|--------------------------------|---|---|--|---|--------------------------------------|---| | 1994 | | | | | | | | - | | April 27 | 0915
0920
0925 | 3.3
19.7
36.1 | 0.200
—
— | <0.100
—
— | 45
45
47 | 16
16
17 | 1.2
1.2
1.2 | 8.4
8.4
8.4 | | June 8 | 1040
1047
1050
1100 | 3.3
19.7
29.5
39.4 | <.100
<.100
— | <.100
<.100
— | 50

50
50 | 18

18
18 | 1.3
-
1.3
1.3 | 8.6

7.7
7.7 | | July 26 | 1038
1044
1048
1052 | 3.3
19.7
31.2
39.4 | .200
.200
.300 | <.100
<.100
<.100 | 48

48
48 | 17
17
17 | 1.3

1.3
1.3 | 8.8
—
8.6
8.7 | | October 13 | 1046
1051
1057 | 3.3
19.7
39.4 | 1.70
2.50 | .700
.800 | 53
50
50 | 19
18
18 | 1.4
1.3
1.3 | 9.0
8.9
9.0 | | 1995 | | | | | | | | | | March 8 | 1428
1433
1436 | 3.3
19.7
29.5 | .600
<.100 | <.100
<.100 | 44
50
44 | 16
18
16 | 1.1
1.2
1.1 | 7.8
8.5
7.8 | less than value shown; ---, no data] | Potassium, dissolved (mg/L as K) | Bicar-
bonate
water,
wh it
field
(mg/L as
HCO ₃) | Car- bonate water, wh it field (mg/L as CO ₃) | Alka-
linity
water,
wh total
it field
(mg/L
CaCO ₃) | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chlo- ride, dis- solved (mg/L as Cl) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | |----------------------------------|--|---|---|---|--------------------------------------|-------------------------------------|--| | | | | | | | | | | 2.6 | 76 | 0 | 63 | 5 .1 | 1.9 | 0.10 | 3.6 | | 2.7 | 76 | 0 | 63 | 4.9 | 1.5 | .10 | 3.7 | | 2.7 | 77 | 0 | 63 | 4.9 | 1.6 | .10 | 3.7 | | 2.7 | 73 | 0 | 61 | 5.4 | 2.0 | .10 | 3.4 | | 2.8 |
75 | 1 | 63 | 5.4 | 2.0 | .20 | 3.3 | | 2.8 | 76 | Ô | 62 | 5.3 | 1.9 | .10 | 4.0 | | 2.6 | 75 | 0 | 62 | 5.2 | 2.1 | .20 | 3.8 | | 2.5 | 75 | 0 | 62 | 5.0 | 2.0 | .10 | 3.3 | | 2.6 | 75 | o | 62 | 5.1 | 2.1 | .10 | 4.4 | | 2.7 | 78 | 0 | 64 | 5.5 | 1.8 | .10 | 2.6 | | 2.6 | 77 | 0 | 63 | 5.4 | 1.8 | .10 | 2.5 | | 2.7 | 77 | 0 | 63 | 5.4 | 1.8 | .10 | 2.5 | | | | | | | | | | | 2.8 | 73 | 0 | 60 | 5.2 | 2.0 | .10 | 10 | | 3.0 | 78
71 | 0 | 64 | 4.8 | 1.8 | .10 | 3.5 | | 2.8 | 71 | 0 | 58 | 5.2 | 1.7 | .10 | 10 | Table 14. Water-quality data for Gull Lake (site 3), Mono County, California—Continued | | · | | · | | • • | | | | |------------|------------------------------|--------------------------------
--|---|--|---|---|--| | Date | Time | Sam-
pling
depth
(ft) | Solids,
residue
at
180°C,
dis-
solved
(mg/L) | Solids, sum of constituents, dissolved (mg/L) | Nitrogen, nitrite, dis- solved (mg/L as N) | Nitrogen, NO ₂ + NO ₃ dissolved (mg/L as N) | Nitrogen, ammonia dissolved (mg/L as N) | Nitrogen, ammonia + organic, total (mg/L as N) | | 1994 | | | | | | | | | | April 27 | 0915
0920
0925 | 3.3
19.7
36.1 | 78
80
56 | 76
76
78 | <0.010
<.010
<.010 | <0.050
<.050
<.050 | 0.010
.010
.010 | 0.60
.20
.20 | | June 8 | 1040
1047
1050
1100 | 3.3
19.7
29.5
39.4 | 72

62
80 | 77
—
79
79 | <.010

<.010
<.010 | <.050

<.050
<.050 | .060

.060
.050 | .30
.30
.30 | | July 26 | 1038
1044
1048
1052 | 3.3
19.7
31.2
39.4 | 80

82
84 | 78
—
77
78 | <.010

<.010
<.010 | <.050
—
<.050
<.050 | .010

.020
.020 | .30
-
.30
1.0 | | October 13 | 1046
1051
1057 | 3.3
19.7
39.4 | 84
78
68 | 81
79
79 | <.010
<.010
<.010 | <.050
<.050
<.050 | .020
.020
.020 | .40
.40
.40 | | 1995 | | | | | | | | | | March 8 | 1428
1433
1436 | 3.3
19.7
29.5 | 82
86
84 | 82
80
80 | <.010
<.010
<.010 | .070
.070
.070 | .160
.130
.140 | .60
.40
.60 | | Phos-
phorus,
total
(mg/L
as P) | Phos- phorus, dis- solved (mg/L as P) | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(mg/L
as B) | Iron,
dis-
solved
(µg/L
as Fe) | Manga-
nese,
dis-
solved
(µg/L
as Mn) | Methy
lene
blue
active
sub-
stance
(mg/L) | |---|---------------------------------------|---|--|--|--|---| | | | | | | | | | 0.070 | <0.010 | <0.010 | 10 | <3 | 2 | <0.02 | | <.010 | <.010 | <.010 | 20 | 8 | 1 | <.02 | | <.010 | <.010 | <.010 | 20 · | 6 | 1 | <.02 | | <.010 | <.010 | <.010 | 20 | 4 | 2 | <.02 | | _ | _ | | | | | _ | | <.010 | <.010 | <.010 | 20 | 3 | 3 | <.02 | | <.010 | <.010 | <.010 | 20 | 4 | 65 | <.02 | | <.010 | .010 | <.010 | 20 | <3 | 1 | .02 | | | | | | | | | | .020 | .020 | <.010 | 20 | <3 | <1 | <.02 | | .060 | .020 | <.010 | 10 | 5 | 97 | .05 | | .020 | <.010 | <.010 | 30 | <3 | 33 | .05 | | .020 | <.010 | <.010 | 20 | 4 | 29 | <.02 | | .040 | <.010 | .010 | 10 | 5 | 28 | | | | | | | | | | | .030 | .030 | .020 | 20 | <3 | 2 | _ | | .030 | .020 | .020 | 20 | <3 | <1 | | | .050 | .030 | .020 | 20 | <3 | 2 | | **Table 15.** Field measurements for vertical water profiles of Gull Lake (site 3), Mono County, California [ft, feet; μS/cm, microsiemen per centimeter at 25°C; °C, degree Celsius; mm, millimeter; mg/L milligram per liter] | Date | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans- par- ency (Secchi disk) (ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | Baro-
metric
pres-
sure
(mm
of
Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen, dis- solved (per- cent satura- tion) | |----------|--|--|--|-------------------------------------|---|--|---|--|--|--| | 1994 | | | | | ::- | | | | | | | April 27 | 0914
0915
0916
0917
0918
0919
0920
0921
0922
0923 | 36.1 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5 | 4.60 | 133
134
134
134
134
135
135
135
135 | 7.6
7.8
8.0
8.1
8.1
8.2
8.2
8.2
8.2
8.2 | 8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 569
569
569
569
569
569
569
569
569 | 8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.9
9.3 | 100
100
100
100
100
100
100
100
102
102 | | | 0924
0925 | | 32.8
36.1 | | 134
135 | 7.8
7.7 | 6.0
6.0 | 569
569 | 7.4
6.8 | 80
74 | | June 8 | 1019
1040
1041
1042
1045
1046
1047
1048
1049
1050
1052
1054
1100
1101 | 43.0 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5
32.8
36.1
39.4
41.0 | 20.0 | 140
140
139
139
139
139
138
138
137
138
138
137 | 8.5
8.5
8.5
8.5
8.4
8.4
8.4
8.5
8.4
8.3
8.2
7.9 | 14.5
14.0
14.0
14.0
14.0
14.0
14.0
12.5
11.5
10.5
9.5
8.0
7.5 | 580
580
580
580
580
580
580
580
580
580 | 8.2
8.2
8.2
8.1
8.1
8.0
8.0
8.6
8.6
8.2
6.8
3.0 | 106
106
106
105
104
104
102
102
107
104
97
79
33
14 | | July 26 | 1037
1038
1039
1040
1042
1043
1044
1045
1046
1048
1049
1050
1052 | 39.4 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
31.2
32.8
36.1
39.4 | 9.10 | 141
141
142
142
142
142
142
141
140
140
138
138
140 | 8.2
8.2
8.2
8.2
8.1
8.1
8.1
8.1
8.0
7.9
7.8
7.5 | 20.5
20.5
20.0
20.0
20.0
20.0
20.0
19.5
18.5
16.0
13.5
11.0 | 583
583
583
583
583
583
583
583
583
583 | 6.9
6.8
6.8
6.8
6.7
6.7
6.6
6.6
6.7
3.4
3.4 | 101
101
99
99
99
97
97
95
93
89
43
41 | **Table 15.** Field measurements for vertical water profiles of Gull Lake (site 3), Mono County, California—*Continued* | Date | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans-
par-
ency
(Secchi
disk)
(ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | Baro-
metric
pres-
sure
(mm
of
Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen,
dis-
solved
(per-
cent
satura-
tion) | |----------------------|--|--|--|--|--|---|---|--|--|--| | 1994 | | | | | | | | | | | | October 13 | 1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057 | 41.0 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5
32.8
36.1
39.4 | 8.85 | 144
144
144
145
145
145
145
145
145
145 | 7.3
7.4
7.4
7.5
7.5
7.6
7.6
7.7
7.7
7.7
7.7 | 12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | 572
572
572
572
572
572
572
572
572
572 | 6.8
6.8
6.8
6.8
6.8
6.8
6.7
6.7
6.7
6.7 | 85
85
85
85
85
85
84
84
84
84 | | 1995 | 1037 | | 33.4 | | 143 | ,,, | 12.3 | 312 | 0.7 | · · | | March 8 ¹ | 1426
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437 | 31.2 | 0
3.3
6.6
9.9
13.1
16.4
19.7
23.0
26.2
29.5
31.2 | (²) | 109
122
133
138
140
141
141
141
142
142 | 7.8
7.6
7.5
7.5
7.5
7.4
7.4
7.4
7.4
7.4 | .1
1.6
2.8
3.2
3.6
3.8
3.8
3.8
3.9
3.9 | 575
575
575
575
575
575
575
575
575
575 | 9.1
7.0
6.6
6.4
6.6
6.5
6.3
6.1
5.9
5.8 | 83
66
65
64
66
67
66
64
62
60
59 | ¹Approximately 2 feet of ice was on the lake when it was sampled. ²No data because of ice cover on lake. Table 16. Water-quality data for Silver Lake (site 1), Mono County, California [ft, feet; μ g/L, microgram per liter; mg/L, milligram per liter; °C, degree Celsius; wh, whole; it, incremental titration; recov., recoverable. <, actual value is less than value shown; — no data] | Date
(1994) | Time | Sam-
pling
depth
(ft) | Chlor-a phyto- plank- ton chromo fluorom (µg/L) |
Chlor-b phyto- plank- ton chromo fluorom (µg/L) | Hard-
ness,
total
(mg/L
as
CaCO ₃) | Calcium,
dis-
solved
(mg/L
as Ca) | Magne- sium, dis- solved (mg/L as Mg) | Sodium,
dis-
solved
(mg/L
as Na) | Potas-
sium,
dis-
solved
(mg/L
as K) | |----------------|--------------|--------------------------------|---|---|---|---|---------------------------------------|--|---| | April 27 | 1509 | 0 | | | | | | | | | | 1510 | 3.3 | 0.800 | <0.100 | 17 | 5.8 | 0.57 | 1.9 | 0.60 | | | 1520 | 32.8 | _ | _ | 17 | 5.7 | .55 | 1.9 | .60 | | June 9 | 0855 | 3.3 | <.100 | <.100 | 16 | 5.6 | .48 | 1.3 | ` .60 | | | 0901 | 19.7 | .800 | .200 | _ | | | | | | | 0911 | 42.7 | | _ | 17 | 5.8 | .51 | 1.4 | .60 | | July 28 | 0939 | 3.3 | .200 | <.100 | 11 | 3.9 | .36 | 1.2 | .40 | | July 26 | 0951 | 19.7 | .500 | <.100 | | J. J | .50 | 1.2 | | | | 0955 | 29.5 | .600 | <.100 | 17 | 5.8 | .50 | 1.7 | .50 | | | 1004 | 44.3 | | | 17 | 6.1 | .52 | 1.7 | .40 | | | | | | | | | | | | | October 13 | 1459 | 3.3 | .400 | .100 | 13 | 4.6 | .44 | 1.4 | .40 | | | 1504
1511 | 19.7
42.7 | .400 | <.100 | 13 |
4.6 |
.44 | 1.4 |
.50 | | | 1311 | | | | | 4.0 | .44 | 1.4 | | | | | Bicar- | Car- | Alka | | | Chlo- | Fluo- | Silica, | | | | bonate | bonate | linit | - | Sulfate, | ride, | ride, | dis- | | Date | TT* | water, | water, | water, | | dis- | dis- | dis- | solved | | (1994) | Time | wh it | wh it | total | | solved | solved | solved | (mg/L | | ` , | | field | field | field | | (mg/L | (mg/L | (mg/L | as | | | | (mg/L as
HCO ₃) | (mg/L as CO ₃) | (mg/L
CaCC | | as SO ₄) | as Cl) | as F) | SiO ₂) | | A = == 1 07 | 1500 | | | | -3/ | | | | | | April 27 | 1509 | 22 | _ | 10 | | 2.5 | 1.1 | <0.10 | 7.3 | | | 1510
1520 | 21 | 0
0 | 18
17 | | 2.5
2.5 | 1.1 | <.10 | 7.3
7.3 | | | 1320 | 21 | U | 17 | | 2.3 | 1.3 | <.10 | 7.5 | | June 9 | 0855 | 21 | 0 | 17 | | 3.1 | .80 | <.10 | 7.5 | | | 0901 | _ | | • - | | | _ | | | | | 0911 | 22 | 0 | 1 18 | | 3.1 | 1.0 | <.10 | 7.8 | | July 28 | 0939 | 15 | 0 | 13 | | 1.8 | .50 | <.10 | 5.6 | | • | 0951 | | | | | | | _ | | | | 0955 | 20 | 0 | 17 | | 2.6 | .90 | <.10 | 7.0 | | | 1004 | 22 | 0 | 18 | | 2.7 | .90 | <.10 | 8.0 | | October 13 | 1459 | 16 | 0 | 14 | | 2.1 | .60 | <.10 | 6.1 | | | 1504 | | _ | | | | | _ | _ | | | 1511 | 17 | 0 | 14 | | 2.1 | .60 | <.10 | 6.2 | | | | | • | • • | | | | | | Table 16. Water-quality data for Silver Lake (site 1), Mono County, California—Continued | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | |------------|--------------|----------------|---------|---------------------------------------|--------------|------------|--------|--------------|------------| | | | | Solids, | Solids, | Nitro- | Nitro |)- | Nitro- | Nitro- | | | | c | residue | sum of | gen, | gen | , | gen, | gen, | | | | Sam- | at | consti- | nitrite, | $NO_2 + 1$ | | ammonia, | ammonia | | Date | Time | pling | 180°C, | tuents, | dis- | dis- | • | dis- | + organic, | | (1994) | 221110 | depth | dis- | dis- | solved | solve | | solved | total | | | | (ft) | solved | solved | (mg/L | (mg/ | | (mg/L | (mg/L | | | | | | | | | | | | | | | | (mg/L) | (mg/L) | as N) | as N | , | as N) | as N) | | July 27 | 1509 | 0 | | _ | _ | _ | | _ | _ | | | 1510 | 3.3 | 16 | 31 | < 0.010 | <0.05 | | 0.020 | 0.70 | | | 1520 | 32.8 | 28 | 30 | <.010 | <.05 | 0 | .020 | .70 | | June 9 | 0855 | 3.3 | 18 | 30 | <.010 | <.05 | 0 | .030 | <.20 | | | 0901 | 19.7 | | _ | _ | _ | _ | _ | _ | | | 0911 | 42.7 | 18 | 31 | <.010 | <.05 | 0 | .030 | <.20 | | | **** | | | | | | _ | | | | July 28 | 0939 | 3.3 | 8 | 21 | <.010 | <.05 | 0 | .030 | .50 | | | 0951 | 19.7 | _ | _ | _ | _ | | _ | _ | | | 0955 | 29.5 | 24 | 29 | <.010 | <.05 | | .020 | .40 | | | 1004 | 44.3 | 26 | 31 | <.010 | <.05 | 0 | .020 | <.20 | | October 13 | 1459 | 3.3 | 8 | 24 | <.010 | <.05 | 0 | .020 | <.20 | | | 1504 | 19.7 | _ | _ | _ | _ | | _ | _ | | | 1511 | 42.7 | 72 | 24 | <.010 | <.05 | 0 | .020 | <.20 | | | | | | Phos- | | | | Methy- | Oil and | | | | Phos- | Phos- | phorus | Boron, | Iron, | Manga- | lene | grease, | | | | phorus, | phorus, | ortho, | dis- | dis- | nese, | blue | total | | Date | Time | total | dis- | dis- | solved | solved | dis- | active | recov. | | (1994) | 11110 | (mg/L | solved | solved | (mg/L | (μg/L | solved | sub- | gravi- | | | | as P) | (mg/L | (mg/L | as B) | as Fe) | (μg/L | stance | metric | | | | as i / | as P) | as P) | as D) | as I C) | as Mn) | (mg/L) | (mg/L) | | | | | | as 1) | | | | (IIIg/L) | | | April 27 | 1509 | _ ` | _ | _ | - | _ | _ | - | <1 | | | 1510 | 0.030 | <0.010 | <0.010 | 20 | 5 | 2 | 0.03 | _ | | | 1520 | .030 | <.010 | <.010 | 20 | 17 | 1 | .03 | _ | | June 8 | 0855 | <.010 | .020 | <.010 | <10 | 11 | 3 | <.02 | _ | | | 0901 | _ | | _ | _ | | _ | _ | _ | | | 0911 | <.010 | <.010 | <.010 | <10 | 9 | <1 | <.02 | _ | | July 28 | 0939 | .090 | .060 | .050 | 10 | 6 | <1 | <.02 | | | 20 | 0951 | .070 | 000 | 0.50 | _ | _ | | 02 | _ | | | 0955 | .030 | .020 | <.010 | 10 | 5 | 14 | <.02 | | | | 1004 | .010 | .010 | <.010 | 10 | 40 | 170 | <.02 | _ | | | 1004 | .010 | .010 | <.010 | 10 | 40 | 170 | ₹.02 | _ | | October 13 | 1459 | <.010 | <.010 | <.010 | <10 | 28 | 33 | <.02 | _ | | | 4 = 4 | | | | | _ | | | _ | | | 1504
1511 | .040 | <.010 | <.010 | 20 | 55 | 44 | <.02 | | Table 17. Field measurements for vertical water profiles of Silver Lake (site 1), Mono County, California [ft, feet; µS/cm, microsiemen per centimeter at 25°C; °C, degree Celsius; mm, millimeter; mg/L milligram per liter] | Date (1994) | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans- par- ency (Secchi disk) (ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water
whole
field
(stand-
ard
units) | Temper-
ature,
water | Baro- metric pres- sure (mm of Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen,
dis-
solved
(per-
cent
satura-
tion) | |-------------|--------------|--|--------------------------------|-------------------------------------|---|---|----------------------------|------------------------------------|-------------------------------------|--| | April 27 | 1509 | 33.1 | 0 | 13.1 | 42 | 6.9 | 6.5 | 580 | 9.6 | 103 | | | 1510 | 25.5 | 3.3 | | 42 | 6.9 | 6.5 | 580 | 9.6 | 103 | | | 1512 | | 6.6 | | 42 | 6.9 | 6.5 | 580 | 9.6 | 103 | | | 1513 | | 9.9 | | 42 | 7.0 | 6.5 | 580 | 9.7 | 104 | | | 1514 | | 13.1 | | 42 | 7.0 | 6.5 | 580 | 9.7 | 104 | | | 1515 | | 16.4 | | 42 | 7.0 | 6.5 | 580 | 9.7 | , 104 | | | 1516 | | 19.7 | | 42 | 7.0 | 6.5 | 580 | 9.6 | 102 | | | 1517 | | 23.0 | | 42 | 7.0 | 6.5 | 580 | 9.6 | 102 | | | 1518 | | 26.2 | | 42 | 7.0 | 6.0 | 580 | 9.5 | 101 | | | 1519 | | 29.5 | | 42 | 7.0 | 6.0 | 580 | 9.4 | 100 | | | 1520 | | 32.8 | | 43 | 7.0 | 6.0 | 580 | 9.4 | 100 | | June 9 | 0854 | 46.9 | 0 | 20.0 | 39 | 6.5 | 12.5 | 589 | 8.4 | 102 | | | 0855 | | 3.3 | | 39 | 6.5 | 12.0 | 589 | 8.4 | 102 | | | 0857 | | 6.6 | | 39 | 6.6 | 12.0 | 589 | 8.4 | 101 | | | 0858 | | 9.9 | | 39 | 6.7 | 11.5 | 589 | 8.6 | 102 | | | 0859 | | 13.1 | | 38 | 6.7 | 11.0 | 589 | 8.6 | 101 | | | 0900 | | 16.4 | | 39 | 6.8 | 11.0 | 589 | 8.7 | 102 | | | 0901 | | 19.7 | | 39 | 6.8 | 10.5 | 589 | 8.7 | 102 | | | 0904 | | 23.0 | | 39 | 6.9 | 10.5 | 589 | 8.8 | 102 | | | 0905 | | 26.2 | | 39 | 6.9 | 10.0 | 589 | 8.6 | 99 | | | 0906 | | 29.5 | | 40 | 6.9 | 10.0 | 589 | 8.4 | 9 7 | | | 0908 | | 32.8 | | 41 | 6.9 | 10.0 | 589 | 8.4 | 96
00 | | | 0909 | | 36.1 | | 42 | 6.9 | 9.0 | 589 | 8.0 | 90 | | | 0910 | | 39.4 | | 42 | 6.9 | 8.5 | 589 | 7.8 | 86
85 | | | 0911 | | 42.7
45.9 | | 42 | 6.9 | 8.5 | 589
589 | 7.7
7.7 | 85
85 | | | 0912
0915 | | 45.9
46.9 | | 42
42 | 6.8
6.8 | 8.5
8.0 | 589 | 7.7
7.5 | 83 | | | | | 40.7 | | 42 | | | | | | | July 28 | 0936 | 44.9 | 0 | 30.8 | 29 | 6.5 | 19.0 | 590 | 6.9 | 96 | | | 0939 | | 3.3 | | 29 | 6.4 | 18.5 | 590 | 6.9 | 96 | | | 0945 | | 6.6 | , | 29 | 6.6 | 18.5 | 590 | 7.0 | 97 | | | 0947 | | 9.9 | į | 29 | 6.6 | 18.5 | 590 | 7.0 | 97 | | | 0948 | | 13.1 | | 30 | 6.6 | 18.0 | 590 . | 7.0 | 96 | | | 0950 | | 16.4 | | 29 | 6.7 | 17.5 | 590 | 7.0 | 95 | | | 0951 | | 19.7 | | 31 | 6.7 | 17.0 | 590 | 7.2 | 97 | | | 0953 | | 23.0 | | 42 | 6.6 | 16.0 | 590 | 7.4 | 97 | | | 0954 | | 26.2 | | 45 | 6.6 | 15.0 | 590 | 7.3 | 94 | | | 0955 | | 29.5 | | 45
43 | 6.6 | 14.5 | 590
500 | 7.9 | 100 | | | 0958 | | 32.8 | | 43
43 | 6.6 | 13.0 | 590
500 | 5.5
3.0 | 68
47 | | | 1000
1001 | | 36.1
39.4 | | 43
43 | 6.5 | 12.0
11.5 | 590
590 | 3.9
3.2 | 47
38 | | | 1001 | | 39.4
42.7 | | 43
44 | 6.5
6.4 | 11.5 | 590
590 | 3.2
2.8 | 38
33 | | | 1002 | | 42.7
44.3 | | 44
44 | 6.4
6.4 | 11.0 | 590
590 | 2.8 | 27 | | | 1004 | | 44.3 | | 44 | 0.4 | 11.0 | 3 9 0 | 4.3 | 21 | Table 17. Field measurements for water profiles of Silver Lake (site 1), Mono County, California—Continued | Date
(1994) | Time | Depth to
bottom
from
surface at
sampling
location
(ft) | Sam-
pling
depth
(ft) | Trans- par- ency (Secchi disk) (ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) |
Baro-
metric
pres-
sure
(mm
of
Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen,
dis-
solved
(per-
cent
satura-
tion) | |----------------|------|--|--------------------------------|-------------------------------------|---|---|------------------------------------|--|-------------------------------------|--| | October 13 | 1458 | 45.9 | 0 | 19.0 | 32 | 8.0 | 11.0 | 580 | 7.6 | 90 | | | 1459 | | 3.3 | | 32 | 7.7 | 11.0 | 580 | 7.6 | 91 | | | 1500 | | 6.6 | | 32 | 7.7 | 11.0 | 580 | 7.6 | 91 | | | 1501 | | 9.9 | | 32 | 7.6 | 11.0 | 580 | 7.6 | 91 | | | 1502 | | 13.1 | | 32 | 7.6 | 11.0 | 580 | 7.6 | 91 | | | 1503 | | 16.4 | | 32 | 7.6 | 11.0 | 580 | 7.6 | 91 | | | 1504 | | 19.7 | | 32 | 7.5 | 11.0 | 580 | 7.6 | 91 | | | 1505 | | 23.0 | | 32 | 7.5 | 11.0 | 580 | 7.6 | 91 | | | 1506 | | 26.2 | | 32 | 7.5 | 11.0 | 580 | 7.6 | 91 | | | 1507 | | 29.5 | | 32 | 7.4 | 11.0 | 580 | 7.6 | 91 | | | 1508 | | 32.8 | | 32 | 7.4 | 11.0 | 580 | 7.6 | 91 | | | 1509 | | 36.1 | | 32 | 7.6 | 11.0 | 580 | 7.4 | 88 | | | 1510 | | 39.4 | | 32 | . 7.4 | 11.0 | 580 | 7.6 | 90 | | | 1511 | | 42.4 | | 32 | 7.4 | 11.0 | 580 | 7.6 | 91 | | | 1512 | | 45.9 | | 32 | 7.4 | 11.0 | 580 | 7.5 | 89 | Table 18. Water-quality data for Silver Lake (site 2), Mono County, California [ft, feet; μ g/L, microgram per liter; mg/L, milligram per liter; °C, degree Celsius; wh, whole; it, incremental titration; recov., recoverable. <, actual value is less than value shown; — no data] | Date
(1994) | Time | Sam-
pling
depth
(ft) | Chlor-a phyto- plank- ton chromo fluorom (µg/L) | Chlor-b phyto- plank- ton chromo fluorom (µg/L) | Hard- ness, total (mg/L as CaCO ₃) | Calcium,
dis-
solved
(mg/L
as Ca) | Magne- sium, dis- solved (mg/L as Mg) | Sodium,
dis-
solved
(mg/L
as Na) | Potassium, dissolved (mg/L as K) | |---|--|---|---|--|--|--|---|---|---| | April 26 | 1604 | 0 | | | | | | | | | | 1605 | 3.3 | 1.70 | <0.100 | 17 | 5.7 | 0.55 | 1.9 | 0.60 | | | 1615 | 32.8 | | | 16 | 5.6 | .55 | 1.9 | .60 | | June 9 | 0959 | 3.3 | <.100 | <.100 | 16 | 5.5 | .46 | 1.3 | .60 | | | 1004 | 19.7 | .300 | <.100 | | | | | | | | 1012 | 42.4 | | | 17 | 5.8 | .52 | 1.5 | .60 | | July 28 | 1212 | 3.3 | .200 | <.100 | 11 | 3.8 | .35 | 1.2 | .40 | | • | 1224 | 23.0 | .800 | <.100 | 13 | 4.4 | .40 | 1.4 | .40 | | | 1232 | 36.1 | | | 17 | 5.8 | .50 | 1.6 | .80 | | October 13 | 1551 | 3.3 | .400 | .100 | 13 | 4.6 | .44 | 1.4 | .40 | | | 1556 | 19.7 | .300 | <.100 | | | | | | | | 1600 | 32.8 | | | 13 | 4.5 | .43 | 1.4 | .40 | | | | | | | | | | | | | Date
(1994) | Time | Bicarbonate water, wh it field (mg/L as HCO ₃) | Carbonate water, wh it field (mg/L as CO ₃) | Alka
linit
water,
total
field
(mg/L
CaCC | y
wh
it
i
i
. as | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dis- solved (mg/L as Cl) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | | (1994) | 1604 | bonate water, wh it field (mg/L as HCO ₃) | bonate water, wh it field (mg/L as CO ₃) | linit
water,
total
field
(mg/L
CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) | ride,
dis-
solved
(mg/L
as Cl) | ride,
dis-
solved
(mg/L
as F) | dis-
solved
(mg/L
as
SiO ₂) | | (1994) | 1604
1605 | bonate water, wh it field (mg/L as HCO ₃) | bonate water, wh it field (mg/L as CO ₃) — 0 | linit water, total field (mg/L CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) | ride, dis- solved (mg/L as Cl) | ride,
dis-
solved
(mg/L
as F) | dis-
solved
(mg/L
as
SiO ₂) | | (1994) | 1604 | bonate water, wh it field (mg/L as HCO ₃) | bonate water, wh it field (mg/L as CO ₃) | linit
water,
total
field
(mg/L
CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) | ride,
dis-
solved
(mg/L
as Cl) | ride,
dis-
solved
(mg/L
as F) | dis-
solved
(mg/L
as
SiO ₂) | | (1994)
——————————————————————————————————— | 1604
1605
1615 | bonate water, wh it field (mg/L as HCO ₃) | bonate water, wh it field (mg/L as CO ₃) — 0 | linit water, total field (mg/L CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) | ride, dis- solved (mg/L as Cl) | ride,
dis-
solved
(mg/L
as F) | dis-
solved
(mg/L
as
SiO ₂) | | (1994)
——————————————————————————————————— | 1604
1605
1615
0959
1004 | bonate water, wh it field (mg/L as HCO ₃) 20 21 | bonate water, wh it field (mg/L as CO ₃) 0 0 | linit water, total field (mg/L CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) 2.5 2.4 3.0 | ride, dis- solved (mg/L as Cl) 1.5 1.0 .80 | ride, dis- solved (mg/L as F) <0.10 <.10 | dis-
solved
(mg/L
as
SiO ₂) 7.3 7.4 7.5 | | (1994)
——————————————————————————————————— | 1604
1605
1615 | bonate water, wh it field (mg/L as HCO ₃) 20 21 | bonate water, wh it field (mg/L as CO ₃) 0 | linit water, total field (mg/L CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) 2.5 2.4 | ride, dis- solved (mg/L as Cl) 1.5 1.0 | ride, dis- solved (mg/L as F) <0.10 <.10 | dis-
solved
(mg/L
as
SiO ₂) | | (1994) April 26 June 9 | 1604
1605
1615
0959
1004
1012 | bonate water, wh it field (mg/L as HCO ₃) 20 21 20 — 21 15 | bonate water, wh it field (mg/L as CO ₃) 0 0 0 0 | linit water, total field (mg/L CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) | ride, dis- solved (mg/L as Cl) 1.5 1.0 .80 1.0 .50 | ride,
dis-
solved
(mg/L
as F)
<0.10 <.10
<.10 | dis-
solved
(mg/L
as
SiO ₂) 7.3 7.4 7.5 7.9 5.6 | | (1994) April 26 June 9 | 1604
1605
1615
0959
1004
1012 | bonate water, wh it field (mg/L as HCO ₃) 20 21 20 21 15 17 | bonate water, wh it field (mg/L as CO ₃) 0 0 0 0 0 0 | linit water, total field (mg/L CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) | ride,
dis-
solved
(mg/L
as Cl) 1.5 1.0 .80 1.0 .50 .60 | ride, dis- solved (mg/L as F) <0.10 <.101010101010 | dis-
solved
(mg/L
as
SiO ₂) 7.3 7.4 7.5 7.9 5.6 6.2 | | (1994) April 26 June 9 | 1604
1605
1615
0959
1004
1012 | bonate water, wh it field (mg/L as HCO ₃) 20 21 20 — 21 15 | bonate water, wh it field (mg/L as CO ₃) 0 0 0 0 | linit water, total field (mg/L CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) | ride, dis- solved (mg/L as Cl) 1.5 1.0 .80 1.0 .50 | ride,
dis-
solved
(mg/L
as F)
<0.10 <.10
<.10 | dis-
solved
(mg/L
as
SiO ₂) 7.3 7.4 7.5 7.9 5.6 | | April 26 June 9 July 28 | 1604
1605
1615
0959
1004
1012
1212
1224
1232 | bonate water, wh it field (mg/L as HCO ₃) 20 21 20 21 15 17 | bonate water, wh it field (mg/L as CO ₃) 0 0 0 0 0 0 | linit water, total field (mg/L CaCC | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) | ride,
dis-
solved
(mg/L
as Cl) 1.5 1.0 .80 1.0 .50 .60 | ride, dis- solved (mg/L as F) <0.10 <.101010101010 | dis-
solved
(mg/L
as
SiO ₂) 7.3 7.4 7.5 7.9 5.6 6.2 | | | 1604
1605
1615
0959
1004
1012
1212
1224
1232 | bonate water, wh it field (mg/L as HCO ₃) 20 21 20 — 21 15 17 20 | bonate water, wh it field (mg/L as CO ₃) 0 0 0 0 0 0 | linit water, total field (mg/L CaCC 17 17 16 — 17 16 — 17 16 — 17 | y
wh
it
i
i
. as | dis-
solved
(mg/L
as SO ₄) 2.5 2.4 3.0 3.0 1.7 1.9 2.7 | ride,
dis-
solved
(mg/L
as Cl) 1.5 1.0 .80 1.0 .50 .60 .90 | ride,
dis-
solved
(mg/L
as F) <0.10 <.10101010 <.10 <.10 <.10 <.10 | dis-
solved
(mg/L
as
SiO ₂)
7.3
7.4
7.5
-
7.9
5.6
6.2
7.5 | Table 18. Water-quality data for Silver Lake (site 2), Mono County, California—Continued | Date (1994) April 26 | Time
1604
1605
1615 | depth (ft) 0 3.3 | Solids, residue at 180°C, dis- solved (mg/L) <1 28 | Solids, sum of consti- tuents, dis- solved (mg/L) 30 30 | Nitrogen, nitrite, dis- solved (mg/L as N) <0.010 <.010 | Nite get NO ₂ + di solv (mg as | n,
· NO ₃ ,
s-
yed
y/L
N) | Nitrogen, ammonia, dissolved (mg/L as N) <0.010 <.010 | Nitrogen, ammonia + organic, total (mg/L as N) <0.20 .20 | |-----------------------|------------------------------|-------------------------------|---|--|--|--|--|--|--| | June 9 | 0959
1004
1012 | 3.3
19.7 |
$\frac{10}{8}$ | 29
 | <.010
—
<.010 | <.0
—
<.0 | 50 | .020
—
.030 | <.20

<.20 | | July 28 | 1212
1224
1232 | 23.0 | 12
18
20 | 21
24
30 | <.010
<.010
<.010 | <.0
<.0
<.0 | 50 | .010
.020
.020 | <.20
<.20
<.20 | | October 13 | 1551
1556
1600 | 19.7 | 4

24 | 24
—
24 | <.010

<.010 | <.0.
—
<.0. | | .020
—
.020 | <.20
—
<.20 | | Date (1994) | Time | Phosphorus, total (mg/L as P) | Phosphorus, dissolved (mg/L as P) | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(mg/L
as B) | Iron,
dis-
solved
(µg/L
as Fe) | Manga-
nese,
dis-
solved
(μg/L
as Mn) | Methy-
lene
blue
active
sub-
stance
(mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 26 | 1604
1605
1615 | | | | 20
20 | 12
18 | |
<0.02
<.02 | <1
 | | June 9 | 0959
1004
1012 | .010

<.010 | <.010

<.010 | <.010

<.010 | 10
10 | 10 9 | 3

<1 | <.02
—
<.02 | _
_
_ | | July 28 | 1212
1224
1232 | <.010
.020
.030 | .020
<.010
<.010 | <.010
<.010
<.010 | 10
<10
10 | 9
8
9 | 4
6
62 | <.02
<.02
<.02 | _
_
_ | | October 13 | 1551
1556
1600 | <.010
—
.020 | <.010
—
.010 | <.010

<.010 | <10
—
10 | 23
—
26 | 34
—
33 | <.02
—
<.02 | _ | Table 19. Field measurements for vertical water profiles of Silver Lake (site 2), Mono County, California [ft, feet; µS/cm, microsiemen per centimeter at 25°C; °C, degree Celsius; mm, millimeter; mg/L, milligram per liter] | Date (1994) | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans- par- ency (Secchi disk) (ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | Baro- metric pres- sure (mm of Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen, dis- solved (per- cent satura- tion) | |-------------|------|--|--------------------------------|-------------------------------------|---|--|------------------------------------|------------------------------------|-------------------------------------|--| | April 26 | 1604 | 34.1 | 0 | 13.1 | 41 | 6.9 | 6.5 | 580 | 9.7 | 104 | | | 1605 | | 3.3 | | 41 | 6.9 | 6.5 | 580 | 9.7 | 104 | | | 1606 | | 6.6 | | 41 | 6.9 | 6.5 | 580 | 9.7 | 104 | | | 1607 | | 9.9 | | 42 | 6.9 | 6.5 | 580 | 9.8 | 105 | | | 1608 | | 13.1 | | 41 | 6.9 | 6.5 | 580 | 9.7 | 104 | | | 1609 | | 16.4 | | 41 | 7.0 | 6.5 | 580 | 9.7 | 104 | | | 1610 | | 19.7 | | 41 | 7.0 | 6.5 | 580 | 9.7 | 103 | | | 1611 | | 23.0 | | 41 | 7.0 | 6.5 | 580 | 9.8 | 104 | | | 1612 | | 26.2 | | 41 | 7.0 | 6.5 | 580 | 9.8 | 104 | | | 1613 | | 29.5 | | 41 | 7.1 | 6.5 | 580 | 9.8 | 104 | | | 1615 | | 32.8 | | 41 | 7.1 | 6.0 | 580 | 9.8 | 104 | | June 9 | 0958 | 44.9 | 0 | 20.0 | 38 | 7.3 | 12.5 | 589 | 8.5 | 104 | | | 0959 | | 3.3 | | 38 | 7.3 | 12.0 | 589 | 8.4 | 102 | | | 1000 | | 6.6 | | 38 | 7.3 | 12.0 | 589 | 8.4 | 101 | | | 1001 | | 9.9 | | 37 | 7.3 | 11.5 | 589 | 8.4 | 100 | | | 1002 | | 13.1 | | 38 | 7.3 | 11.0 | 589 | 8.5 | 101 | | | 1003 | | 16.4 | | 38 | 7.3 | 11.0 | 589 | 8.5 | 100 | | | 1004 | | 19.7 | | 38 | 7.3 | 11.0 | 589 | 8.6 | 101 | | | 1005 | | 23.0 | | 38 | 7.3 | 10.5 | 589 | 8.7 | 101 | | | 1006 | | 26.2 | | 39 | 7.3 | 10.0 | 589 | 8.4 | 97 | | | 1008 | | 29.5 | | 39 | 7.2 | 10.0 | 589 | 8.4 | 96 | | | 1009 | | 32.8 | | 41 | 7.2 | 9.0 | 589 | 8.1 | 91 | | | 1010 | | 36.1 | | 41 | 7.2 | 9.0 | 589 | 8.0 | 90 | | | 1011 | | 39.4 | | 42 | 7.1 | 8.5 | 589 | 8.0 | 89 | | | 1012 | | 42.4 | | 42 | 7.1 | 8.0 | 589 | 7.7 | 85 | | June 28 | 1210 | 36.1 | 0 | 32.2 | 29 | 7.0 | 19.5 | 588 | 7.1 | 101 | | | 1212 | | 3.3 | | 29 | 7.0 | 19.0 | 588 | 7.1 | 100 | | | 1214 | | 6.6 | | 29 | 7.0 | 18.5 | 588 | 7.1 | 99 | | | 1215 | | 9.9 | | 29 | 7.0 | 18.5 | 588 | 7.1 | 99 | | | 1217 | | 13.1 | • | 29 | 7.0 | 18.0 | 588 | 6.8 | 94 | | | 1219 | | 16.4 | j | 29 | 7.0 | 17.5 | 588 | 7.0 | 96 | | | 1221 | | 19.7 | | 30 | 7.0 | 17.0 | 588 | 7.1 | 95 | | | 1224 | | 23.0 | | 40 | 6.9 | 15.5 | 588 | 7.3 | 96 | | | 1226 | | 26.2 | | 42 | 6.8 | 15.0 | 588 | 7.1 | 91 | | | 1229 | | 32.8 | | 42 | 6.7 | 13.5 | 588 | 5.8 | 72 | | | 1232 | | 36.1 | | 42 | 6.7 | 13.0 | 588 | 5.5 | 68 | **Table 19.** Field measurements for vertical water profiles of Silver Lake (site 2), Mono County, California—*Continued* | Date
(1994) | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans- par- ency (Secchi disk) (ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water
(°C) | Baro- metric pres- sure (mm of Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen,
dis-
solved
(per-
cent
satura-
tion) | |----------------|------|--|--------------------------------|-------------------------------------|---|--|------------------------------------|------------------------------------|-------------------------------------|--| | October 13 | 1550 | 36.1 | 0 | 20.0 | 31 | 7.3 | 11.0 | 580 | 7.7 | 92 | | | 1551 | | 3.3 | | 31 | 7.2 | 11.0 | 580 | 7.7 | 92 | | | 1552 | | 6.6 | | 32 | 7.2 | 11.0 | 580 | 7.7 | 92 | | | 1553 | | 9.9 | | 32 | 7.2 | 11.0 | 580 | 7.7 | 92 | | | 1554 | | 13.1 | | 32 | 7.2 | 11.0 | 580 | 7.7 | 92 | | | 1555 | | 16.4 | | 32 | 7.2 | 11.0 | 580 | 7.6 | 91 | | | 1556 | | 19.7 | | 32 | 7.2 | 11.0 | 580 | 7.6 | 91 | | | 1557 | | 23.0 | | 32 | 7.2 | 11.0 | 580 | 7.6 | 90 | | | 1558 | | 26.2 | | 32 | 7.2 | 11.0 | 580 | 7.6 | 91 | | | 1559 | | 29.5 | | 32 | 7.2 | 11.0 | 580 | 7.6 | 90 | | | 1600 | | 32.8 | | 32 | 7.2 | 11.0 | 580 | 7.6 | 90 | | | 1601 | | 36.1 | | 31 | 7.2 | 10.5 | 580 | 7.8 | 92 | Table 20. Water-quality data for Silver Lake (site 3), Mono County, California [ft, feet; μ g/L, microgram per liter; mg/L, milligram per liter; °C, degree Celsius; wh, whole; it, incremental titration; recov., recoverable. <, actual value is less than value shown; — no data] | Date
(1994) | Time | Sam-
pling
depth
(ft) | Chlor-a phyto- plank- ton chromo fluorom (µg/L) | Chlor-b phyto- plank- ton chromo fluorom (µg/L) | Hard- ness, total (mg/L as CaCO ₃) | Calcium, dis- solved (mg/L as Ca) | Magne- sium, dis- solved (mg/L as Mg) | Sodium,
dis-
solved
(mg/L
as Na) | Potas-
sium,
dis-
solved
(mg/L
as K) | |----------------|------|--|---|---|--|---|---------------------------------------|--|--| | April 27 | 1624 | 0 | | _ | | | | _ | _ | | | 1625 | 3.3 | 1.00 | < 0.100 | 18 | 6.2 | 0.61 | 2.1 | 0.60 | | | 1633 | 27.9 | _ | - | 17 | 5.8 | .56 | 1.9 | .60 | | June 9 | 1137 | 3.3 | <.100 | <.100 | 16 | 5.5 | .47 | 1.3 | , .60 | | | 1142 | 19.7 | .500 | .100 | | | _ | _ | _ | | | 1146 | 32.8 | - | | 17 | 5.8 | .51 | 1.5 | .60 | | July 28 | 1532 | 0 | | | | | _ | | _ | | | 1536 | 3.3 | .300 | <.100 | 12 | 4.0 | .37 | 1.3 | .40 | | | 1547 | 23.0 | .600 | <.100 | 14 | 4.9 | .44 | 1.5 | .50 | | | 1552 | 31.2 | .700 | <.100 | 17 | 5.8 | .50 | 1.6 | .50 | | Date
(1994) | Time | Bicar-
bonate
water,
wh it
field
(mg/L as
HCO ₃) | Car- bonate water, wh it field (mg/L as CO ₃) | Alka-
linity
water, w
total it
field
(mg/L a:
CaCO ₃) | s | Sulfate,
dis-
solved
(mg/L
as SO ₄) | Chloride, dis- solved (mg/L as Cl) | Fluo- ride, dis- solved (mg/L as F) | Silica,
dis-
solved
(mg/L
as
SiO ₂) | | April 27 | 1624 | | | | | _ | | _ | _ | | | 1625 | 26 | 0 | 21 | | 2.3 | 1.6 | <0.10 | 7.3 | | | 1633 | 22 | 0 | 18 | | 2.4 | 1.1 | <.10 | 7.2 | | June 9 | 1137 | 20 | 0 | 16 | | 3.0 | .80 | <.10 | 7.4 | | | 1142 | _ | | - | | | | _ | | | | 1146 | 21 | 0 | 17 | | 3.2 | 1.0 | <.10 | 7.8 | | July 28 | 1532 | | _ | _ | | _ | | | | | | 1536 | 15 | 0 | 12 | | 1.7 | .50 | <.10 | 5.6 | | | 1547 | 16 | 0 | , 13 | | 2.2 | .80 | <.10 | 6.2 | | | 1552 | 21 | 0 | 17 | | 2.7 | . 9 0 | <.10 | 7.3 | Table 20. Water-quality data for Silver Lake (site 3), Mono County, California—Continued | Date
(1994) | Time | Sam-
pling
depth
(m) | Solids,
residue
at
180°C
dis-
solved
(mg/L) | Solids, sum of constituents, dissolved (mg/L) | Nitrogen, nitrite, dissolved (mg/L as N) | NO ₂ so | itro-
gen,
+ NO ₃ ,
lis-
lved
ng/L
s N) | Nitrogen, ammonia, dissolved (mg/L as N) | Nitrogen, ammonia + organic, total (mg/L as N) | |----------------|------|---|---|---|--|--|--|--|---| | April 27 | 1624 | 0 | | | | | | _ | | | | 1625 | 3.3 | 18 | 34 | < 0.010 | <0.
| 050 | <0.010 | < 0.20 | | | 1633 | 27.9 | 8 | 30 | <.010 | <. | 050 | <.010 | <.20 | | June 9 | 1137 | 3.3 | 2 | 29 | <.010 | <. | 050 | .020 | <.20 | | | 1142 | 19.7 | | | | | | | | | | 1146 | 32.8 | 16 | 31 | <.010 | <. | 050 | .030 | <.20 | | July 28 | 1532 | 0 | | | | | | | | | - | 1536 | 3.3 | 16 | 21 | <.010 | <.0 | 050 | .010 | <.20 | | | 1547 | 23.0 | 14 | 24 | <.010 | <. | 050 | .020 | .30 | | | 1552 | 31.2 | 20 | 30 | <.010 | | 050 | .010 | .20 | | Date
(1994) | Time | Phos-
phorus,
total
(mg/L
as P) | Phosphorus, dissolved (mg/L as P) | Phosphorus ortho, dissolved (mg/L as P) | Boron,
dis-
solved
(mg/L
as B) | Iron,
dis-
solved
(µg/L
as Fe) | Manga-
nese,
dis-
solved
(µg/L
as Mn) | Methy-
lene
blue
active
sub-
stance
(mg/L) | Oil and grease, total recov. gravimetric (mg/L) | | April 27 | 1624 | | | | | | | | <1 | | | 1625 | <0.010 | < 0.010 | < 0.010 | 20 | 10 | 3 | < 0.02 | | | | 1633 | <.010 | <.010 | <.010 | 20 | 12 | 3 | <.02 | | | June 9 | 1137 | <.010 | <.010 | <.010 | <10 | 10 | 2 | <.02 | | | | 1142 | | | | _ | _ | | _ | _ | | | 1146 | .010 | <.010 | <.010 | 10 | 9 | 2 | <.02 | | | July 28 | 1532 | | - | | _ | | | | <1 | | | 1536 | <.010 | .010 | <.010 | <10 | | 3 | <.02 | | | | 1547 | .020 | .010 | <.010 | 20 | <3 | 9 | <.02 | _ | | | 1552 | .020 | <.010 | <.010 | 10 | 8 | 33 | <.02 | | Table 21. Field measurements for vertical water profiles of Silver Lake (site 3), Mono County, California [ft, feet; µS/cm, microsiemen per centimeter at 25°C; °C, degree Celsius; mm, millimeter; mg/L milligram per liter] | Date
(1994) | Time | Depth to bottom from surface at sampling location (ft) | Sam-
pling
depth
(ft) | Trans- par- ency (Secchi disk) (ft) | Spe-
cific
con-
duct-
ance
(µS/cm) | pH
water,
whole
field
(stand-
ard
units) | Temper-
ature,
water | Baro- metric pres- sure (mm of Hg) | Oxygen,
dis-
solved
(mg/L) | Oxygen,
dis-
solved
(per-
cent
satura-
tion) | |----------------|--------|--|--------------------------------|-------------------------------------|---|--|----------------------------|------------------------------------|-------------------------------------|--| | April 27 | 1624 | 32.2 | 0 | 14.1 | 43 | 6.6 | 6.5 | 580 | 9.9 | 107 | | • | 1625 | | 3.3 | | 43 | 6.8 | 7.0 | 580 | 9.9 | 107 | | | 1626 | | 6.6 | | 43 | 6.8 | 6.5 | 580 | 9.9 | 107 | | | 1627 | | 9.9 | | 43 | 6.8 | 7.0 | 580 | 9.9 | 107 | | | 1628 | | 13.1 | | 43 | 6.8 | 7.0 | 580 | 9.8 | 106 | | | 1629 | | 16.4 | | 44 | 6.8 | 6.5 | 580 | 9.8 | 106 | | | 1630 | | 19.7 | | 42 | 6.9 | 6.5 | 580 | 9.8 | 106 | | | 1631 | | 23.0 | | 42 | 6.9 | 6.5 | 580 | 9.8 | 105 | | | 1632 | | 26.2 | | 40 | 7.0 | 6.0 | 580 | 10.0 | 106 | | | 1633 | | 27.9 | | 39 | 7.0 | 6.0 | 580 | 10.0 | 106 | | June 9 | 1136 | 45.9 | 0 | 17.1 | 38 | 7.7 | 13.5 | 590 | 8.5 | 105 | | | 1137 | | 3.3 | | 38 | 7.6 | 12.5 | 590 | 8.4 | 103 | | | 1138 | | 6.6 | | 39 | 7.5 | 12.0 | 590 | 8.5 | 102 | | | 1139 | | 9.9 | | 38 | 7.5 | 11.5 | 590 | 8.6 | 102 | | | 1140 | | 13.1 | | 38 | 7.5 | 11.5 | 590 | 8.6 | 102 | | | 1141 | | 16.4 | | 39 | 7.5 | 11.0 | 590 | 8.8 | 103 | | | 1142 | | 19.7 | | 38 | 7.5 | 10.5 | 590 | 8.8 | 102 | | | 1143 | | 23.0 | | 40 | 7.5 | 10.5 | 590 | 8.9 | 103 | | | 1144 | | 26.2 | | 40 | 7.5 | 10.5 | 590 | 8.8 | 102 | | | 1145 | | 29.5 | | 40 | 7.4 | 10.5 | 590 | 8.7 | 101 | | | 1146 | | 32.8 | | 42 | 7.3 | 10.0 | 590 | 8.4 | 97 | | | 1147 | | 36.1 | | 43 | 7.3 | 9.5 | 590 | 8.2 | 93 | | | 1148 | | 39.4 | | 46 | 7.2 | 8.5 | 590 | 7.6 | 84 | | | 1149 | | 40.4 | | 45 | 7.1 | 8.5 | 590 | 7.6 | 84 | | July 28 | 1532 | 34.1 | 0 | 25.9 | 29 | 7.0 | 19.5 | 588 | 7.3 | 104 | | | 1536 | | 3.3 | | 29 | 7.1 | 19.0 | 588 | 7.2 | 102 | | | 1537 | | 6.6 | | 29 | 7.1 | 18.5 | 588 | 7.1 | 99 | | | 1539 | | 9.9 | | 29 | 7.1 | 18.5 | 588 | 7.1 | 99 | | | 1540 | | 13.1 | 1 | 29 | 7.1 | 18.0 | 588 | 7.2 | 100 | | | 1541 | | 16.4 | 1 | 30 | 7.1 | 18.0 | 588 | 7.2 | 99 | | | . 1543 | | 19.7 | • | 30 | 7.1 | 17.5 | 588 | 7.2 | 98 | | | 1547 | | 23.0 | | 36 | 7.0 | 16.5 | 588 | 7.5 | 100 | | | 1548 | | 26.2 | | 45 | 6.9 | 15.0 | 588 | 7.3 | 94 | | | 1550 | | 29.5 | | 44 | 6.8 | 13.5 | 588 | 6.3 | 79 | | | 1552 | | 31.2 | | 43 | 6.8 | 13.5 | 588 | 6.1 | 76 | Table 22. Sediment interstitial-water nutrient analysis for Gull Lake, Mono County, California [See figure 5 for locations of bed-sediment sampling sites. GC, gravity corer; PG, Ponar grab. ft, feet; in., inch; mg/L, milligram per liter. <, actual value is less than value shown] | Date
(1994) | Core
No. | Sam-
pler | Depth
to
sedi-
ment
(ft) | Depth
interval
(in.) | Nitrogen, nitrite dis- solved (mg/L as N) | Nitro-
gen,
NO ₂ +
NO ₃
dis-
solved
(mg/L
as N) | Nitro-
gen,
ammonia
dis-
solved
(mg/L
as N) | Nitro-
gen,
dis-
solved
(mg/L
as N) | Nitro-
gen
total
(mg/L
as N) | Phos-
phorus
dis-
solved
(mg/L
as P) | Phos-
phorus
total
(mg/L
as P) | Phosphate dissolved (mg/L as P) | |----------------|-------------|--------------|--------------------------------------|----------------------------|---|--|---|--|--|---|--|---------------------------------| | June 8 | 1 | GC | 42.7 | 0-3.1 | <0.01 | <0.05 | 14.30 | 21.80 | 2.75 | 2.75 | 3.25 | 2.41 | | | | | | 5.1-7.9 | <.01 | <.05 | 14.05 | 20.55 | 22.35 | 2.16 | 2.55 | 2.11 | | | | | | 11.0–14.2 | .04 | <.05 | 10.85 | 17.00 | 20.44 | 1.17 | 2.25 | 1.06 | | | 2 | GC | 52.5 | 0-3.1 | .01 | .05 | 8.60 | 13.98 | 14.58 | 1.53 | 1.71 | .60 | | | | | | 5.1-7.9 | <.01 | <.05 | 11.08 | 18.10 | 18.10 | 2.22 | 2.21 | .76 | | | | | | 11.0–14.2 | <.01 | <.05 | 10.95 | 16.62 | 16.76 | 2.51 | 2.51 | .87 | | | 3 | PG | 59.1 | | .03 | .06 | 8.38 | 16.34 | 19.42 | .69 | 1.39 | .61 | | | 4 | GC | 9.9 | 0-3.9 | .01 | .07 | 2.90 | 9.84 | 10.05 | .13 | .13 | <.01 | | | | | | 3.9-7.8 | .01 | .06 | 2.14 | 9.18 | 9.44 | .14 | .15 | <.01 | | | 5 | PG | 9.9 | | .17 | .07 | 1.29 | 12.12 | 14.49 | .05 | .18 | <.01 | | July 25 | 6 | PG | 42.7 | | .04 | <.05 | 8.92 | 11.44 | 13.48 | .64 | 1.35 | .59 | | | 7 | PG | 32.8 | | .03 | <.05 | 2.68 | 4.53 | 6.88 | .26 | .54 | .24 | | | 8 | GC | 19.7 | 0-3.9
3.9-7.1 | .03
.03 | <.05
<.05 | 4.20
2.36 | 6.60
4.20 | 8.07
6.18 | .30
.05 | .19
.31 | <.01
.03 | **Table 23.** Surface area and volume of Gull Lake, Mono County, California [Date of survey, September 27, 1994. All elevations based on California Department of Transportation bench mark CT#2, elevation 7,618.24 feet, centerline hole punch on bolt head of fire plug at intersection of Leonard and Bruce Streets, June Lake, California. ft, feet; acre-ft, acre-feet] | Elevation (ft) | Depth
(ft) | Area
(acre) | Cumulative volume (acre-ft) | |----------------|---------------|----------------|-----------------------------| | 7,595.0 | 0 | 70.2 | 2,412.6 | | 7,593.7 | 1.3 | 69.0 | 2,322.1 | | 7,583.7 | 11.3 | 61.6 | 1,669.1 | | 7,573.7 | 21.3 | 54.5 | 1,088.6 | | 7,563.7 | 31.3 | 45.2 | 590.1 | | 7,543.7 | 51.3 | 8.2 | 38.1 | | 7,534.4 | 60.6 | 0 | 0 | **Table 24.** Surface area and volume of Silver Lake, Mono County, California [Date of survey, September 29, 1994. All elevations based on California Department of Transportation bench mark PM 7.07, elevation 7,226.31 feet; aluminum cap on 1-inch IP, 0.3 foot below ground, 1 foot east of right edge of pavement, 14.4 feet right of centerline stripe of Highway 158, Mono County, across from entrance to Silver Lake Resort Trailer Park, 10.5 feet west of metal witness post. ft, feet; acre-ft, acre-feet] | Elevation (ft) | Depth
(ft) | Area
(acre) | Cumulative
volume
(acre-ft) | |----------------------|---------------|----------------|-----------------------------------| | 7,217.5 | 0 | 116.0 | 3,060.0 | | 7,216.7 | 0.8 | 112.2 | 2,979.8 | | 7,206.7 | 10.8 | 78.6 | 2,025.8 | | 7,196.7 | 20.8 | 68.2 | 1,291.9 | | 7,186.7 | 30.8 | 50.4 | 698.9 | | 7,176.7 | 40.8 | 33.6 | 279.0 | | 7,166.7 | 50.8 | 10.8 | 57.4 | | ¹ 7,156.0 | 61.5 | 0 | 0 | ¹Maximum depth.